Constraints on the variability of the oceanic CO₂ sink from observations and theory

Nicolas Mayot*, E. T. Buitenhuis, R. Wright, and C. Le Quéré

*University of East Anglia, Norwich (UK) – n.mayot@uea.ac.uk

EGU General Assembly 2023

Session OS3.5: Recent advances in constraining the marine carbon cycle Friday, 28 April – 16:40 | Room L3

- Substantial variabilities in ocean CO₂ sink inferred from data products are not reproduced by models

	Amplitude of interannual variability between 1990-2019 (PgC/yr)	
Models	0.14 ± 0.03	
Data products	0.25 ± 0.08	

- Substantial variabilities in ocean CO₂ sink inferred from data products are not reproduced by models

- Ocean CO₂ sink estimates from data products and models diverge in 2010s

	Amplitude of interannual variability between 1990-2019 (PgC/yr)	Trend in 2010s (PgC/yr/decade)
Models	0.14 ± 0.03	0.34 ± 0.10
Data products	0.25 ± 0.08	0.77 ± 0.38

- Global Ocean Biogeochemical Models underestimate interannual variability (-39%)
 - Refutes a strong decadal trend in the 2010s
- Data products might be sensitive to a lack of data and overly amplify the 2010s trend

Using a hybrid approach

We used a state-of-the-art Global Ocean Biogeochemical Models (i.e., NEMO-PlankTOM12)

Global Ocean Biogeochemical Models (GOBMs):

	"Observations"
Atmospheric reanalysis dataset	Atmospheric [CO ₂]
h	
Physical ocean model	Marine biogeochemistry model

'Model"

We used a state-of-the-art Global Ocean Biogeochemical Models (i.e., NEMO-PlankTOM12) and data of CO_2 fugacity at the sea surface (fCO₂) from SOCAT

Global Ocean Biogeochemical Models (GOBMs):

"Model"

We used a state-of-the-art Global Ocean Biogeochemical Models (i.e., NEMO-PlankTOM12) and data of CO_2 fugacity at the sea surface (fCO₂) from SOCAT

Step 1: Optimisation of model parameters

We used a state-of-the-art Global Ocean Biogeochemical Models (i.e., NEMO-PlankTOM12) and data of CO_2 fugacity at the sea surface (fCO₂) from SOCAT

Step 1: Optimisation of model parameters

Method: step 2

- The hybrid approach suggests that the model underestimates the amplitude of the interannual variability

Variability of the global ocean CO₂ sink

- The hybrid approach suggests that the model underestimates the amplitude of the interannual variability
 - Does not support a strong increase of the oceanic CO₂ sink in 2010s

- Some data products suggest a strong positive trend in 2010s in the North

Variability of the global ocean CO₂ sink

- Some data products suggest a strong positive trend in 2010s in the North
- Mostly associated with the subpolar North Pacific region which was under sampled in the 2010s

- Global Ocean Biogeochemical Models underestimate interannual variability (-39%)
 - Refutes a strong decadal trend in the 2010s
- Data products might be sensitive to a lack of data and overly amplify the 2010s trend

- Global Ocean Biogeochemical Models underestimate interannual variability (-39%)
 - Refutes a strong decadal trend in the 2010s
- Data products might be sensitive to a lack of data and overly amplify the 2010s trend

Thank you

Nicolas Mayot*, E. T. Buitenhuis, R. Wright, and C. Le Quéré

*University of East Anglia, Norwich (UK) – n.mayot@uea.ac.uk

Step 1: Optimisation of model parameters

280 300 320 340 360 380 400 420 fCO₂ (μatm)

280 300 320 340 360 380 fCO₂ (µatm) 20 -50 -40 -30 -20 -10 0 10 20 30 Bias (µatm)

AIAV in PgC/yr (Amplitude of interannual variability)

