

EGU GENERAL ASSEMBLY 2023

25 APRIL 2023

The Merging of a Coronal Dimming and a Coronal Hole

Nawin Ngampoopun¹

David Long^{2,1}, Deborah Baker¹, Lucie Green¹, Stephanie Yardley^{3,1,4}, Alexander James^{1,5}, Andy To¹

¹Mullard Space Science Laboratory, University College London, UK
²Astrophysics Research Centre, Queen's University Belfast, UK
³Department of Meteorology, University of Reading, UK
⁴Donastia International Physics Center (DIPC), Spain
⁵European Space Agency, European Space Astronomy Centre, Spain

The multilayer of the Sun's Atmosphere

2

UCL

Coronal Hole (CH)

- Region of relatively cool, less dense plasma in the solar corona that contains open magnetic field lines
- Can be seen as dark patches on the solar disc in Extreme-UV (EUV) and X-Ray observations
- Monopolar region dominated by one polarity
 - Open fields root in the photosphere
- Long-lived, relatively stable region
 - Last from several solar rotations up to a few years

https://static.uni-graz.at/fileadmin/_processed_/a/e/csm_CoronalHole_b60168675a.jpg

Coronal Hole and Solar Wind

- The solar wind is the stream of charged particles from the Sun's corona
 - Carries magnetic fields onto interplanetary space, forming the heliosphere
 - Driving space weather on Earth's magnetosphere
- Fast solar wind (v > 450 km/s) originates from CH [Widely accepted]
- Slow solar wind (v < 450 km/s) origins are still in debate
 - Interchange reconnection at open-closed field boundaries: CH boundaries, Active regions edge, Helmet streamers
- Jets and Plumes may also contribute to solar wind

Coronal Mass Ejection (CME)

- A sudden release of plasma and magnetic field from the solar corona to the heliosphere
 - Release up to 10¹³ kg of plasma with speed up to thousands of km/s (Green et al., 2018)
- Converting magnetic energy -> kinetic energy through magnetic reconnection
- Often associated with Solar Flares:
 - Standard Flare-CME model (CHSKP model)
- Causing geomagnetic storms and driving space weather

(Mcintosh et al. 2007)

Coronal Dimming (CD)

- The plasma-devoid volumes resulted from solar eruptions
 - Reduced emission regions in EUV and X-Ray observation
- Short lifetime: 3– 12 Hours (Reinard and Biesecker 2008)
- Caused by plasma depletions along rapidly expanding magnetic fields
 - Mark the footpoints of the eruptions
 - Magnetic field lines become 'open.'
- "Transient Coronal Hole"

Coronal dimmings properties

- Strong plasma upflows
 - Up to 50-150 km/s (Tian et al. 2012; Veronig et al., 2019)
 - Possible sources of solar wind
- Plasma depletion
 - Density decreases up to 50 70 % (Vanninathan et al., 2018)
- Their recovery is associated with interchange reconnection (Attrill et al. 2008)

Coronal Hole vs Coronal Dimming

	Coronal Hole	Coronal Dimming
Lifetime	Several days up to a few years	Typically 3 - 12 Hours
Formation	Gradual Process (Active regions evolution/ Poleward migration)	Solar Eruptions (CMEs)
Plasma Upflow Speed (Tian et al. 2021)	~10 – 20 km/s ~50 – 100 km/s (Jet)	~ 50 – 150 km/s

Could it be that some CHs actually are long-lived coronal dimmings?

- Some coronal holes form due to solar eruptions (e.g., Heinemann et al. 2018)
- Justifying the usage of the term 'Transient coronal hole'

UCL

How do we observe solar corona?

- Broadband Imager:
 - High-cadence/High-resolution Image in EUV or X-ray

- Spectrometer:
 - Derive plasma dynamics and properties

Multi-Spacecraft Coordinated Observation

- Slow Solar Wind SOOP campaign (Yardley et al. 2023, in prep)
- SDO
 - AIA: Full solar disc EUV images across seven passbands
 - HMI: Full solar disc LOS magnetogram
- SO/EUI in 174 Å passband
 - FSI Synoptic, HRI: from 10:15 11:15 UT
- Hinode
 - EIS: Coronal Spectrometric observation, Running 4 Raster using two different studies
 - XRT: Thin Al poly filter $T \sim 10^7 K$

^AUCL

12

Identifying CH and CD boundaries

- The threshold for boundary identification
 - Using SDO/AIA 193 Å
 - Coronal Hole (CH: Black): 35% of solar disc median intensity (e.g., Rotter et al., 2012)
 - Coronal Dimming (CD: Yellow): Pixels with a value < 0.35 in base ratio images (Dissauer et al. 2018)
- Base Ratio image showed 'brightening' between CD and CH
 - Plasma compression inside the overlying field arcade

EUV Observation: SDO/AIA and SO/EUI

- 02:00 UT Eruption started -> 08:15 UT Coronal dimming (yellow) appeared to merge with CH (black)
- The merged region remained stable for at least 72 hours CH and coronal dimming became indistinguishable from each other
- CH and CD both had negative polarity

18/04/2023

EUV Observation: SDO/AIA and SO/EUI

- 02:00 UT Eruption started -> 08:15 UT Coronal dimming (yellow) appeared to merge with CH (black)
- The merged region remained stable for at least 72 hours CH and coronal dimming became indistinguishable from each other
- CH and CD both had negative polarity

18/04/2023

Component Reconnection

- The expanding field lines from CD (yellow) were at an angle with CH field lines (black)
- Component reconnection took place between two field lines at the boundary region
- Footpoint Switching: After reconnection, the CD field (pink) is rooted in CH, and the CH field (blue) is rooted in CD.
- Upflow and downflow of plasma due to reconnection

[•]UCL

EIS Observation – Before Merging

- Observation using Fe XII 192.39 Å
- Raster 1: 03:05 UT
 - The large region of upflow
 - Plasma depletion due to expanding CME structure (Tian et al. 2012, Veronig et al. 2019)
- Raster 2: 07:45 UT
 - Two distinct upflow regions, the sources of upflow are less certain.

UCL

EIS Observation – After Merging

- Raster 3: 10:20 UT
 - AIA 193 Å and EIS Doppler Velocity map show a thin-collimated coronal jet inside the newly merged region. (Orange arrow)
- Raster 4: 13:35 UT
 - A mixture of plasma upflow and downflow inside the merged region
 - Enhanced nonthermal velocities compared to before merging
 - The flows become more 'disordered' compared to before merging

Plasma Upflows Before and After the Merging

Spatially averaged the spectra from pixels inside the boxes

Location	Timing	Doppler Velocity (km/s)	Nonthermal Velocity (km/s)
CH Edge (Box 1)	Before Merging	-18	28
	After Merging	-22	31
OD(Day 0)	Before Merging	-26	20
CD (B0X 2)	After Merging	-16	33
Quiet Sun (Box 3)	Before Merging	0	25
	After Merging	-3	31
Jet (Box 4)	Before Merging	-9	27
	After Merging	-23	34

• Enhanced nonthermal velocities after the merging

 The upflow speed inside CD and quiet Sun regions became more similar to CH upflow after the merging

Secondary Component of Line profiles

- Left panel: CD upflows at 03:05 UT raster,
- V ~ 187 km/s: In agreement with the previous observations

- Right Panel: Coronal jet originated from the merged region at 10:35 UT
- V~-64 km/s

Jet inside the merged region

- This may be analogous to the simulation of jets from moving magnetic elements (Wyper et al. 2018)
 - The observed jet's velocity agrees with the simulation.
- Changes in magnetic field configuration allow the jets to form more frequently.

Summary

- We reported and analysed the merging of a southern polar coronal hole (CH) with a coronal dimming (CD) resulting from a filament eruption on 18 March 2022
 - The first time that the merging between two open-field structures was observed using spectroscopic **observation**
- CH and CD became indistinguishable from one another after the merging.
 - Lifetime longer than a typical CD lifetime of 3-12 hours
 - The upflow profile inside CD and quiet Sun region became more similar to CH upflow after the merging, with the upflow speed in the order of 10-20 km/s
 - Coronal jets and coronal plumes are found inside CD, similar to CH
- Component reconnection is considered the primary driving process in the merging of these two structures