Use of observations to constrain projection of tidewater glaciers
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Introduction

It comes maily from the future of the two ice sheets
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We choose Upernavik Isstram because

1. Largest uncertainties of Greenland future
contribution to SLR are situated in
tidewater glacier area
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We choose Upernavik Isstram because

1. Largest uncertainties of Greenland future
contribution to SLR are situated in
tidewater glacier area

2. it has suffered a large loss of ice mass
since the 1980s (4 % of Greenland's
contribution to past sea level rise)
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There are many sources of uncertainty
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Ice flow model :
viscosity, sliding

Density
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Bedrock topography
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1. Ice flow model :
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There are many sources of uncertainty

1. Ice flow model :
viscosity, sliding
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3. Interaction with ocean
: SSP, GCM, sensibility
to ocean temperature
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1. What is the ability of Elmer/Ice to represent past
changes of velocity, elevation, ice discharge and ice
mass loss ?
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1. What is the ability of Elmer/Ice to represent past
changes of velocity, elevation, ice discharge and ice
mass loss 7

2. What part of the uncertainty is due to the
dynamics ?
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1. What is the ability of Elmer/Ice to represent past
changes of velocity, elevation, ice discharge and ice
mass loss 7

2. What part of the uncertainty is due to the
dynamics ?

3. How using a large amount of data to constrain
future sea level rise?

Page 5 Ensemble simulation for ice sheet model initialisation




Introduction Study case Results Conclusion
[e]e] oooe [e]e]e]e} o

Experimental design consists of

1/ Quantify dynamics
uncertainties :

m Initial state

= Dynamics laws (friction,
rheology)
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Study case
oce

Experimental design consists of

1/ Quantify dynamics 2/ Run an ensemble
uncertainties : simulation of 200
= Initial state members over an

historical period forced
by the position of the
front and the surface

mass balance between
1985 and 2019.

= Dynamics laws (friction,
rheology)
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Study case
oce

Experimental design consists of

1/ Quantify dynamics 2/ Run an ensemble 3/ Extend these
uncertainties : simulation of 200 members into the
= Initial state members over an future with ISMIP
| Dymarifes lavs (Feden, historical .p.eriod forced protocol taking i.nt$>
rheology) by the position of the account uncertainties
front and the surface related to SSP, GCM,
mass balance between RCM and front

1985 and 2019. retreat
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Conclusion

Historical, committed and predicted mass loss

= historical prediction
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Historical, committed and predicted mass loss
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1. Our ensemble
model is able to
reproduce past
changes
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Historical, committed and predicted mass loss
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=+~ committed mass loss + Obs

O_W 3
-250 R e [
= e ‘“.__-—1
O, -500 L
[/} 4 L
& 1 [
w -750 -2
(2] |

g 1 [

o -1000 [
= ] j—3
-12504 [

-1500 -4

Page 7

R N R R N R R
1990 2000 2010 2020 2030 2040 2050 2060 2070
Time (a)

Ensemble simulation for ice sheet model initialisation

Sea level equivalent [mm]

1. Our ensemble
model is able to
reproduce past
changes

2. Gives us

confidence in the
simulation of the
ice dynamics
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Sea level equivalent [mm]

1. Our ensemble

model is able to
reproduce past
changes

Gives us
confidence in the
simulation of the
ice dynamics

The mass loss

already underway
today is significant}
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Share of uncertainty due to different sources
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Scoring can reduce uncertainty,

Sea level rise in 2100
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Scoring can reduce uncertainty,
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Scoring can reduce uncertainty,
but beware of overconfidence!

Sea level rise in 2100
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Conclusion
°

Take-home messages

1. Our ensemble initialisation method is able to reproduce past
changes of Upernavik Isstrgm (Jager et al., JOG, submitted)

2. To reduce uncertainty of ice mass loss, each sources matter

3. When using scoring, beware of overconfidence: it depends on a
multitude of choices.

Perspective : Extend the method to the GrlS scale.
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ISMIP6 Greenland is today the state of the art

Sea-level contribi

for uncertainty quantification
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Scoring can reduce uncertainty,
but beware of overconfidence!
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® Gigatons of CO,-equivalent emissions (GtCO,-eq/yr)

The future will be complicated,
but not as bad as the SSP5-8.5

Li ng warming to 1.5°C and 2°C involves rapid, deep and
in most cases immediate greenhouse gas emission reductions

Net zero CO, and net zero GHG emissions can be achieved through strong reductions across all sectors

a) Net global greenhouse
s gas (GHG) emissions

2019 emissions were
[ 12% higher than 2010

A Implemented policies result In projected
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