
Parana Meteorological Service

An Update of the Operational Quantitative Precipitation Estimation Algorithm
in Southern Brazil Blending Dual Polarization Weather Radar Network

with Rain gauges and Satellite Data - Preliminary Results
C. Beneti1, L. Calvetti2, F. Verdelho1, R. R. Junior1, J. S. Junior1 and V. Cebalhos1
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INTRODUCTION

Quantitative estimation of precipitation (QPE) of high resolution, accuracy, and real-
time increases the potential of weather radars for many applications, such as flash flood
forecasting and hydropower production and distribution management, agriculture, and
other applications. Using polarimetric variables from dual-polarization weather radars
has significantly improved quantitative precipitation estimation in many countries with
diverse weather. In Brazil, in the past ten years, we have seen an increase in dual-
polarization weather radar coverage, mostly S-Band and some X-Band, concentrated
in the southern parts of the country, an area prone to severe weather with high pre-
cipitation and lightning due to mesoscale convective systems. This region’s significant
economic activity is agriculture and energy production, accounting for more than 33%
of the hydro energy generation used in the country.
Therefore, the improvement of precipitation estimation is a necessary goal. Using
weather radar’s QPE depends on calibration, good fit with rain gauges and distrom-
eters, good data filtering, target distance from the radar, orography (i.e., relative to the
topography), and signal propagation, as well as other factors. A multi-sensor integra-
tion approach of remotely sensed precipitation estimation using weather satellites and
weather radar with rain gauges improves the accuracy of hydrological models com-
pared to a model using only rain gauge data.
A quantitative precipitation estimation algorithm called SIPREC (System for Integrated
PRECipitation) [1] has been used operationally for over 15 years, combining data from
different sources, such as weather radar, rain gauge, and satellite. Precipitation es-
timates are obtained through an automated precipitation classification scheme based
on reflectivity structures. This approach aggregates data from rain gauges by interpo-
lation while maintaining the spatial distribution of the radar or satellite measurement.
Statistical results indicate that the method can reduce radar and satellite data errors.
This method is an essential advantage in an operational environment since it does not
require frequent processing to update the weights as in other known schemes.
However, this approach does not solve problems such as uncertainties related to Z-R
estimation, spatial variability, and the one-hour temporal resolution. A recent significant
rainfall event in Parana State (Figure 1), resulting in severe flooding (Figure 2), high-
lights the critical need for new tools that enhance accuracy.

Figure 1: Weather radar network in Parana, Brazil. Figure 2: Flooding in Francisco Beltrão on 11/Oct/22

OBJECTIVE

This study proposes the use of a machine learning architecture to implement an im-
proved QPE model, using rain gauge, weather radar, and satellite, to generate a spa-
tially and temporally consistent meteorological field.

DATA

# MOSAIC WEATHER RADAR: Z-R Precipitation estimates based in [2]

# SATELLITE: GPM/IMERG Precipitation estimates [3].

# RAIN GAUGE: Data from SIMEPAR rain gauge network.

# PERIOD: January 2018 to December 2022.

METHODOLOGY

To improve the SIPREC algorithm, we used machine learning classification and regres-
sion methods to address the problem of precipitation estimation using dual polarization
variables and rain gauge. An enhanced satellite precipitation estimation using GOES-
16 data also replaced the previous dataset, and a new quality control algorithm for the
network of weather radars was also applied to the dataset.
Our proposed methodology for creating a new tool for quantitative rainfall estimation
uses two machine learning algorithms, SVM (Support Vector Machine) [4] classifica-
tion, and GBR (Gradient Boosting Regression) [5] modeling. To build a classification/re-
gression model using machine learning algorithms and classify zero-inflated data -
common in spatial precipitation datasets - we use the Support Vector Machine (SVM)
algorithm to tell us whether the target is zero. The trained SVM model is then used as
an input to the GBR model, which is trained with the corresponding observed outputs
to find the best combination of model parameters to predict the unknown outputs (pre-
cipitation estimation).
Feature engineering involves selecting the rain gauge data using IDW (Inverse Dis-
tance Weighting Interpolation) based on its relevance to the interpolation problem and
the weather radar mosaic using a Z-R disdrometric relationship [2] and the satellite
precipitation estimation [3].
To evaluate the model’s performance, we validated the trained GBR model using a sep-
arate dataset from the training set. The R2 (coefficient of determination) and RMSE
(root-mean-square error) between the estimates and observations were calculated for
the ML algorithms trained by the data set that did not include any station among those
in the training set. The expected training and test data numbers are approximately 80%
and 20%, respectively. Figure 3 depicts the flowchart of this new methodology, which
we call SIPREC-ML.

Figure 3: SIPREC-ML new flowchart.

PRELIMINARY RESULTS

The preliminary results showed excellent machine learning model performance for the
SIPREC model compared to the older version, which uses Poisson’s equation for data
interpolation. Figure 4 and Table 1 present metrics evolutions and scatterplot test data of
observed values against both models’ estimates. SIPREC-ML shows superior temporal
coherence, with an R2 of 0.93 versus 0.8 for the older SIPREC version. The SIPREC-ML
reduced the errors of the estimates, showing an MSE of 0.21 versus 0.38 for the previous
version of SIPREC.

Model MSE R2

SIPREC 0.38 0.8

SIPREC ML 0.21 0.93

Table 1: Evolution of SIPREC metrics from data test.

PRELIMINARY RESULTS

Figure 4: Scatter plot data test (a) SIPREC Poisson’s model and (b) SIPREC ML model.

Figure 5: Models estimates precipitation for Francisco Beltrão at (a)SIPREC Poisson’s model and (b)SIPREC ML model for 11
UTC on October 11, 2022 — Red Point Francisco Beltrão Rain Gauge.

Figure 5 compares the older version of SIPREC model and our proposed SIPREC-ML,
for the event rainfall event on October 11, 2022, at 11 UTC, during which flooding oc-
curred in the city of Francisco Beltrão. Our analysis revealed that the SIPREC ML data
exhibited a more consistent behavior when compared to the radar and satellite data, pro-
viding a more realistic representation of the rainfall in the affected region.
We removed the Francisco Beltrão rain gauge during our training process and analyzed
rainfall data. Our findings showed that the SIPREC ML rain gauge produced similar
values to the Francisco Beltrão gauge, indicating the efficacy of our training approach.
Additionally, the SIPREC Poisson data also a good approach extrapolated a rainfall grid
with values ranging from 18 to 24 mm. Our findings also say the efficacy of our training
approach. These results promise to improve rainfall prediction and flood risk assessment
in urban areas and basins.
A performance evaluation study shows improvements in precipitation estimation, primar-
ily when used in real-time in an operational environment. This paper presents the results
of this evaluation, with applications in severe weather events with high precipitation in
the area. Future research will present the long term evaluation, including impact of the
weather radar and satellite precipitation estimations in the region.
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