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What is a hydrological model

e Definition 1: A mathematical formula O(t)= f(x1(t), x2(f), ... ),
where O the dependent (discharge), and x1, X, ... the
independent (the stresses) time-varying variables.

e Definition 2: A stochastic function O= f(x1, X2, ... ), where O,
X1, X2 ... stochastic variables.

e Definition 3: A mutual information function /[ {x1, X2, ...}, O].



Uncertainty

* Aleatory — lack of knowledge (unknown errors in
measurements, unknown physical processes, ... )

* Epistemic — insufficient model (simplistic structure, poor
calibration, ...)

Note: this is not the most common definition.



Modelling uncertainty

AR1 Residual Error

* Definition 1: O(f)= f(x:(f), x2(t), ... )+ po(t=1) + &(f)
epistemic aleatory
(Schaefli et al., 2007).

* Definition 2;: — ...

* Definition 3: epistemic [{X1, X2, ...}, O] — [0, O]
aleatory @[ O | {x1, X2, ...} ]
(Findanis and Loukas, 2022).



Modelling uncertainty — stochastic approach
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Stochastic approach — implementation
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Case studies
How do the different types of errors manifest?
Where to get the tools:

* KNN C code for MATLAB or command prompt from
hydronoa.gr (software — ... uncertainty with KNN).

* BlueCat R code from Alberto Montanari’s github (just
search for hymodbluecat).



Case studies — Aleatory uncertainty
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Case studies — Epistemic uncertainty
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Case studies — Epistemic uncertainty
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Case studies — Epistemic uncertainty
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How to cope with aleatory uncertainty

* Get more information
e Evaluate the reliability of the available data
* More independent variables

e Monte Carlo simulations



How to cope with epistemic uncertainty

 Recalibrate the model
* Try another model (latent conditional errors)
* Model ensembles

Here a hybrid approach is suggested that combines a
feedforward neural network with model ensembles.



Hybrid approach
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Results: Model A
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Results: Model B
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Results: model A + model B~ FNN
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Conclusions

* A stochastic approach can be employed to analyze both
aleatory and epistemic uncertainties in hydrological models.

* Aleatory and epistemic uncertainties manifest as

characteristic patterns in the plot of the confidence intervals;
however, conditional errors may remain hidden.

* A hybrid approach, combining multi-model ensembles with
FNN, can be employed to cope with epistemic uncertainties,
especially in addressing latent conditional errors.



End of presentation
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