Multi-decadal Satellite Gravity Mission Simulations Comparing Resolving

Capabilities of a Long-term Trend in the Global Ocean Heat Content

Marius Schlaak^{1*}, Roland Pail¹, Alejandro Blazquez², Benoit Meyssignac², and Jean-Michel Lemoine³

¹ Technical University of Munich, TUM School of Engineering and Design, Chair for Astronomical and Physical Geodesy, Munich, German
² LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, 31400 Toulouse, France
³ GET, Université de Toulouse, CNES, CNRS, IRD, UPS, 31400 Toulouse, France

*contact me via email, LinkedIn, ResearchGate

EGU23, Vienna On-site Poster Presentation EGU23-8590, X2.56

1.1 Measuring global ocean heat content as a proxi for the Earth Energy Imbalance

- Changes in Ocean Heat Content (OHC) represents good proxy for Eath Energy Imbalance (EEI), as the ocean absorbs more than 90% of EEI.
- The signal magnitude of EEI is small compared to incoming energy from solar radiation.
- EEI at the top of the atmosphere causes energy to accumulate in the Earth's system and drives climate change

Fig. 1: Global energy budget of the Earth beginning of 21st century. The magnitude of the globally averaged components is given in Wm⁻² (from Forster et al. 2021).

1.2 Sea level budget equation

 Space geodetic techniques allow global measurements of the thermal extension of the oceans using the Sea Level (SL) budget equation

(Eq.1) $\Delta SL_{total} = \Delta SL_{mass} + \Delta SL_{thermo} + \Delta SL_{halo}$

• Globally the change in salinity in the oceans in negligible, therefore, Eq.1 can be simplified to get the thermosteric SL change

(Eq.2) $\Delta SL_{thermo} = \Delta SL_{total} - \Delta SL_{mass}$

• With an expansion coefficient (ε) changes in OHC can be derived (Eq.3).

(Eq.3)
$$\Delta OHC = \frac{\Delta SL_{thermo}}{\varepsilon}$$

40 ASL total: 3.30 +/-0.50 mm/yr ASL tmmo alti-GRACE: 1.02 +/-0.71 ASL thermo NCEI: 1.3 +/-0.35 ASL total GRACE+NCEI: 3.58 +/-0.61 5 0 5 0 5 0 5 0 5 0 5 0 5 0 0 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Fig. 2: Global mean anomalies of global mean sea level, including ΔSL_{total} in black, and its components (ΔSL_{mass}) in red and ΔSL_{thermo} in blue (from [2]).

2. Measuring ocean heat content with space geodetic techniques

- Total SL changes (ΔSL_{total}) are measured with satellite altimetry
- Current altimeter data measures a SL trend of $\Delta SL_{total} = 3.54 \pm 0.4$ mmyr⁻¹ [1].
- Mass component of SL change (ΔSL_{mass}) is determined by satellite gravity missions.
- Current GRACE estimations quantify the mean mass component of the sealevel rise to be ΔSL_{mass} : 1.83 \pm 0.21mmyr-1 [1].

Fig. 3: Satellite altimetry range measurement of sea level (credit; CLS, AVISO)

Fig. 4: Satellite Gravimetry principle using Satellite-Satellite-Tracking measurements. (from Angermann et al. 2022)

3. Climate model projections to evaluate improvements of future satellite gravity missions

- Model input is based on mean CMIP6 esemble projections
- Offline models provide estimates of ice sheet and glacier melting according to the CMIP projection
- Challenging difference in magnitudes over land compared to sea:
 - Decimeter per year on the continents
 - Millimeter per year in the oceans
- Model data from 2016 to 2100 (d/o 170) is used

What improvements in accuracy of $\triangle OHC$ can be expected from the Mass change And Geosciences

International Constellation (MAGIC)?

Fig. 5: Climate model data in mm EWH after spherical harmonic analysis to d/o 170. Example for 2016.

4.1 Closed loop simulations of future satellite gravimetry observation concept (MAGIC)

Input signals (d/o 80):

- GFDL-CM4 \rightarrow SSP 5-8.5 Ice sheets, Glacier and Ocean signals
- OT-error → Model difference EOT11a-GOT4.7

Instrument Noise (MAGIC):

• Accelerometer
$$ACC_{LoS} = 1 \cdot 10^{-11} \sqrt{\frac{\left(\frac{0.001Hz}{f}\right)^2}{\left(\left(\frac{0.00001Hz}{f}\right)^2 + 1\right)}} + 1 + \left(\frac{f}{0.1Hz}\right)^4 \qquad \left[\frac{m}{s^2 \sqrt{Hz}}\right]$$

• LRI (polar)
$$LRI_{GFO} = \sqrt{\left(L \cdot \frac{10^{-15}}{\sqrt{f}}\right)^2 + \left(\frac{10^{-12}}{f^2}\right)^2} \qquad \left[\frac{m}{\sqrt{Hz}}\right]$$

• LRI (inclined) LRI = L
$$\cdot \left(2 \cdot 10^{-13} \sqrt{1 + \left(\frac{0.01Hz}{f}\right)^2} \sqrt{1 + \left(\frac{0.001Hz}{f}\right)^2}\right) \left[\frac{m}{\sqrt{Hz}}\right]$$

Orbits:

- Polar pair: 5-day sub-cycle at **high** altitude (p_5d_H)
- Inclined pair: 5-day sub-cycle at mid altitude (i_5d_Mb)
- Orbits repeat every 30 days at a 5s sampling.

IAPG

Vienna, Austria, 23-28 April 2023

ТЛП

4.2 Closed loop simulations of future satellite gravimetry observation concept (MAGIC)

Fig. 6: Numerical closed loop simulation environment for single pair and double pair simulations following the MAGIC baseline scenario.

5.1 Simulation results

- Improved long-term trend (Fig. 7) with:
- Increased observation period
- Advanced observation system
- Aliasing errors are strongest in polar

regions

Fig. 7: Residuals for linear trend estimation from single (upper row) and double pair (lower row) simulations considering (from left to right) 10, 30, 50, 80 years of observations given in EWH [mmyr⁻¹].

IAPG

Vienna, Austria, 23-28 April 2023

5.2 Simulation results

- CMIP6 model data shows an acceleration of sea-levelrise over the century
- Excluding polar areas, the ocean RMS reduces even further to 1 mmyr⁻¹ for the single pair and 0.2 mmyr⁻¹ for the double pair (Table 1).
- After a couple of years OT-aliasing is no more reduced by the increased number of observations, due to the fixed orbit repeat pattern.
- The residuals show a minimum, after 30 years.
- The increase in residuals after 30 years is correlated with the accelerated ice loss increasing the Gibbs effect.

	<u>Reference</u>	<u>Single Pair</u>	Double Pair	Table 1. Mean ocean trend
[yrs.]	Mean ΔSL_{mass} [mm/yr.]	Ocean RMS [mm/yr.]	Ocean RMS [mm/yr.]	$\lambda = \begin{cases} < +70 \\ > -70 \end{cases} \text{ and } \text{the}$
10	1.16	7.76	0.86	corresponding root mean
30	1.85	0.98	0.13	over the ocean for single and
50	2.44	0.91	0.22	intervals 10, 30, 50, and 80
80	3.76	0.97	0.26	

6. Outlook & Conclusion

- The simulation environment allows realistic estimation of satellite gravity observations for GRACE-FO and MAGIC constellation for Spherical Harmonic (SH) degree 80. In future work it is planned to increase the maximum degree and order to 160.
- Large difference in the input signal magnitude between continents and ocean causes Gibbs phenomena in the SH representation, especially in regions of intense and localized signals.
- > Post-processing of simulation results is still to be done. As well as the computation of the thermosteric sea-level change ΔSL_{thermo} to evaluate the gain in accuracy that is to be expect from MAGIC for the assessment of EEI.
- > MAGIC already shows a clear improvement in RMS estimating ΔSL_{mass} especially in the areas covered by the inclined pair between the latitudes -70 and 70.

References

[1] Marti, Florence; Blazquez, Alejandro; Meyssignac, Benoit; Ablain, Michaël; Barnoud, Anne; Fraudeau, Robin et al. (2022): Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and space gravimetry. In *Earth Syst. Sci. Data* 14 (1), pp. 229–249. DOI: 10.5194/essd-14-229-2022.

[2] Meyssignac, Benoit; Boyer, Tim; Zhao, Zhongxiang; Hakuba, Maria Z.; Landerer, Felix W.; Stammer, Detlef et al.
(2019): Measuring Global Ocean Heat Content to Estimate the Earth Energy Imbalance. In *Front. Mar. Sci.* 6, Article 432. DOI: 10.3389/fmars.2019.00432.

[3] Schlaak, Marius; Pail, Roland; Jensen, Laura; Eicker, Annette (2022): Closed loop simulations on recoverability of climate trends in next generation gravity missions. In Geophysical Journal International 232 (2), pp. 1083–1098. DOI: 10.1093/gji/ggac373.

Marius Schlaak: email, LinkedIn, ResearchGate

EGU23, Vienna On-site Poster Presentation EGU23-8590, X2.56

