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Introduction

Want a model for future joint distributions of rainfall across space. Use the copula trick: (1) modelling marginal distributions at each locations separately and (2) uniting them with copulas to infuse
a spatial dependence. For predictors X i,t = (X (1)

i,t , . . . , X (6)
i,t ) and target rainfall Yt = (y1,t, . . . , yn,t) at times t ∈ Z and locations i, combined into present information Pt0 = {X i,t, Yt : t < t0}, we

write our model for future s ≥ t0 through Sklar’s theorem as:
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Now the question is: “How to model marginal densities fi and how to model the copula c to capture the spatio-temporal nature of the data ?”. We propose novel solutions for both parts.

1. Joint Generalised Neural Models for Marginals

Have to take particularities of rainfall data into account when modelling fi
(
yi,s|Pt0

)
.

Rainfall data is zero-inflated ( over-representation of 0-valued observations).
Rainfall can be > 0 with a continuous probability density function on R>0.
Rainfall can also never occur, resulting in a discrete observation with mass at 0.

We use a mixture model, giving seperate probability to 0 and positive rain as:

fi (y|P) = [1 − p] · δ0 (y) + p · G (y; µ, φ) = fi(y|µ, φ, p).

Expand on existing GLM and NN literature to create JGNMs- a model to learn
parametric densities with the combined strengths of both approaches:

Green box: Initial Input data, a subset of Pt0 relevant to location i.
Blue box: NN to refine the data into new predictors, captures non-linear trends.
Red box: Simultaneous GLMs for parameters of model, using the refined predictors.

2. Censored Spatial Copula

Assume c is a Gaussian copula, inducing a known form for its density and allowing us to learn the
spatial dependence. But we have to take into account the zero-inflation of data, so we modify the
classical Gaussian copula through censoring :

1. Transform all observations to a common Gaussian scale using probability integral transforms
with their JGNM marginals giving xi,t = Φ−1(ui,t) = Φ−1(F (yi,t|µi,t, φi,t, pi,t)).

2. All 0-valued observations yi,t get mapped to the censoring levels di,t = Φ−1(1 − pi,t).
3. Modify the copula density c to reflect said censoring.

The resulting density has to integrate over the censoring levels of dry locations, yielding

c(x1,t, ..., xn,t) =
∫ di1,t

−∞ ...
∫ dik,t

−∞ φn(z1,t, ..., zn,t; 0, Σ) dxi1,t... dxik,t∏
{i:yi,t>0} φ(xi,t) ·

∏
{j:yj,t=0} Φ(dj,t)

where Σ is a covariance matrix that we have to estimate. Construct Σ using GPKs, relying on

parameter θ and distance D: Σ(i,j) = k(D(i,j)|θ) = 21−ν
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)
.

We specify D with relevant spatial information and only need to estimate θ.

3. Copula Estimation via Scoring Rules

Estimation of Σ via MLE becomes expensive due to integration in c. Instead rely on likelihood-
free inference via Scoring Rules. Optimise Energy Score as divergence between simulations
and observations:
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For selected θ construct Σ to simulate data from φn(.|0, Σ) and censor with di,t; these are simulations
from cθ. Choose θ∗ = arg min

θ
SR(θ|{xi,t : i ∈ {1, . . . , n}, t < t0}).

4. Application to UK Rainfall

• Data is on a 100*140 grid covering the UK with 7 predictors and target rain for 40 years with a 20 years/20 years train/test split.

• Compare our model Cens-JGNM against benchmark ConvCNP and VAE-GAN.
• Assess calibration (a), spatial-coherence (b) and precision (c) of forecasts.
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Diagnostic Metrics
Model Cens-JGNM ConvCNP VAEGAN
CRPS (a), (c) 1.1613 1.6536 4.5059
Energy Score (a), (c), (b) 2.6184 3.1003 3.2127
Variogram Score (b) 2.9 e+6 7.9 e+6 9.8 e+6
RMSB (c) 3.8642 4.3073 4.8861
MAB (c) 1.839 3.0266 1.9865

Cross-correlation maps, (b) .
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Conclusion

Contribution 1: JGNM which unite two powerful frameworks into a reliable learner of parametric distributions with
complex data patterns such as rainfall.
Contribution 2: Censored Gaussian Copulas as a rigorous treatment of zero-inflated joint density modelling, or any
data with censoring.
Contribution 3: Main contribution of this work, a methodology for the estimation of copulas without relying on the
likelihood, much cheaper in most cases especially in high dimensions.
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