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Introduction
Data assimilation (DA) for rainfall-runoff models:
• Physically based models:  observable state variable(s) (𝑥) ⇒

feasible DA (after bias correction)
• Conceptual models: non-observable state variables ⇒ DA 

needs relationship (inverse observation operator ℎ−1) 
between observations (𝑦) and state variable(s)

Research objectives: 
• Use machine learning (ML) methods to establish inverse 

observation operator for the PDM 
• Improve flow forecasts by assimilating the retrieved state 

variable

Probability Distributed Model (PDM)
The PDM is a conceptual, lumped rainfall-runoff model [1].
• Inputs: precipitation (𝐼) and potential evaporation (E)
• Routing by three reservoirs:

1. Probability-distributed soil moisture storage: storages of 
capacity 𝑐𝑖 are distributed in the catchment with probability 
density 𝑓(𝑐𝑖). All storages with 𝑐𝑖 < 𝐶∗ (the critical capacity), 
produce direct runoff
2. Surface water component: 2 linear reservoirs
3. Groundwater component: 1 non-linear reservoir

• Output: flow at catchment outlet 𝑄

𝑁𝑆𝐸 for Zwalm catchment 10/2012 – 11/2022: 0.760
14 parameters calibrated with Nelder-Mead method for  01/2012  
- 12/2019

Satellite data for Zwalm Catchment 

Conclusions and perspectives

Data assimilation: Newtonian nudging 

ො𝑥−: a priori

𝑦
ℎ−1(𝑦)

𝑥𝑜𝑏𝑠

DA

𝑡 → 𝑡 + Δ𝑡

ො𝑥+: a posteriori

Sentinel-1 SAR 
backscatter ~ 
soil moisture ~ 
𝐶∗

Sentinel-3/PROBA-V: LAI 
~ vegetation effect on 
backscatter

10 x 10 m 𝛾0 : VV 
and VH 

300 x 300 m 
LAI

Every timestep: 
spatial average per 
land use category

LAI and 𝛾0 timeseries 
per land use1 category: 
06/2015 – 11/2023

Features: Observational timeseries
Targets: PDM generated 𝐶∗

Goal: Learning ℎ−1 to produce a 𝐶𝑜𝑏𝑠
∗ reflecting observed conditions

ML algorithms for ℎ−1:
• Linear: linear regression (LR), ridge/lasso regression,

𝜖 −SVR
• Non-linear: gaussian processes (GP) , FF-MLP, LSTM 

General trends for ML algorithms:

Focus on 1 timestep in, 1 timestep out

𝐶𝑜𝑏𝑠,𝑡
∗ = ℎ−1(𝛾𝑡

0, LAIt, DOY𝑠𝑖𝑛/𝑐𝑜𝑠)

1Water and urban regions are masked

𝑅𝑡𝑟𝑎𝑖𝑛
2 = 0.822, 𝑅𝑡𝑒𝑠𝑡

2 = 0.808 𝑅𝑡𝑟𝑎𝑖𝑛
2 = 0.942, 𝑅𝑡𝑒𝑠𝑡

2 = 0.812

Linear models Non-linear models

(+) Good generalisation (-) Prone to overfitting

Few (hyper)parameters More (hyper)parameters

! Only ≈ 600 training 
samples !

Update the 𝐶∗ state variable within time window of a Sentinel-1 observation:

General trend for choice of 𝜏 and 𝛾𝐾: 
Increased 𝜏 and/or 𝛾𝐾 ⇒
Δ𝑁𝑆𝐸 period 1 ↑, Δ𝑁𝑆𝐸 period 3 ↓

መ𝐶∗+ = መ𝐶∗− + 𝐾 ⋅ 𝑊𝑡 ⋅ γ 𝐶𝑜𝑏𝑠
∗ − መ𝐶∗−

Experiments with 𝜏 = 5 h and 𝛾𝐾 = 0.5

• መ𝐶∗+: a posteriori, updated critical capacity • መ𝐶∗−: a priori critical capacity from PDM • 𝐶𝑜𝑏𝑠
∗ : “observed” critical capacity from ℎ−1

• 𝑊𝑡: temporal weighing functions (assimilate
𝜏 hours before and after observation)

• 𝛾: observational uncertainty • 𝐾: Nudging factor 

Period PDM 
calibrated

ML 𝒉−𝟏

trained
𝚫𝐍𝐒𝐄

LR
𝚫𝐍𝐒𝐄

GP

06/2015-
12/2019

0.0013 0.0006

1/2020 –
12/2020

0.0026 0.0018

1/2021 –
11/2022

0.0004 -5e-5

• Newtonian Nudging DA of 𝐶𝑜𝑏𝑠
∗ has minimal influence on model performance

• Non-linear inverse observation operators do not yield better performance in DA
• Fundamental question: Can a 𝐶𝑜𝑏𝑠

∗ containing valuable observational information be retrieved if ℎ−1 is trained on 𝐶∗ from the PDM?

Possible methodological improvements:
• 𝛾 of Newtonian Nudging in function of model and observational uncertainty
• Application of a more advanced DA technique (e.g. ensemble Kalman Filter)

Broader research perspective:
• Replace PDM and DA by ML methods capable of dealing with irregularly sampled and partially observed timeseries such as the ODE-

RNN [2] and ODE-LSTM [3] structures
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