Kinematics at the Muragl rock glacier in Switzerland between 2015 and 2022

Sandro Cathomen¹, Johann Junghardt¹, and Isabelle Gärtner-Roer² ¹ Institute of Natural Resource Sciences, ZHAW Zurich University of Applied Sciences, Wädenswil, Switzerland ² Department of Geography, University of Zurich, Zurich, Switzerland

Objective

- · Correlations in the UAV data and the terrestrially collected data
- current kinematic and morphological conditions of the Muragl rock glacier
- correlations between kinematics and air/ground temperature
- future trends

Results and Discussion

- Muragl rock glacier shows local volume changes from 4m increase to 4m decrease from 2015 to 2022
- The maximum measured creep velocities were 13.81m in seven years
- Same pattern shown by Nötzli et. al. 2013 and Kääb et. al. 2005
- Winter 2019/2020 first time statewide mean temperature over 0°C (0.7°C)

Conclusion

- The two combinated methods give a good overview of the kinematics of Muragl and show the same patterns
- Biggest mass movement in zone A & B
- The Muragl rock glacier has locally average creep velocities of up to 2 m/yr. This is relatively high compared to the rock glaciers in the nearer region such as the Murtel-Corvatsch and Schafberg rock glacier.

Outlook

Max. data collection interval of 3 to 5 years, for better visibility of high velocity areas

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Universität Zürich

	S . A LIN CALL STORE	1000000	A CONTRACTOR AND A	
ID	Horizontaldistanz [m]	ID	Horizontaldistanz [m]	
01	2.04	11	10.96	
02	3.38	12	6.66	
03	3.65	13	8.38	
04	5.29	14	5.19	
04	6.39	15	3.23	
05	6.56	16	3.78	
06	8.98	17	4.05	
07	11.60	18	4.37	
08	13.81	19	5.88	
10	13.30	18a	4.01	

scientific sources

MUR_017

Cathomen, S., Junghardt, J., and Gärtner-Roer, I.: Kinematics at the Muragl rock glacier in Switzerland, EGU Gener: Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-8729, https://doi.org/10.5194/egusphere-egu23-8729, 2023,

Noetzli, J., Buchli, T., Delaloye, R., Gärtner-Roer, I., Gruber, S., Hauck, C., Hilbich, C., Kos, A., Lambiel, C., Morard, S. Phillips, M., & Springman, S. (2013). Permafrost in Switzerland 20 (Permafrost), 10/11, 80. https://doi.org/10.13140/RG.2.1.1466.1847 /2009 and 2009/2010 Glad

Kääb, A., Huggel, C., Fischer., Schmutz, K., Schneider, D., Strozzi, T., & Weidmann, Y. (2005). Remote sensing of glacier and permafrost-related hazards in high mountains: An overview. Natural Hazards and Earth System Sciences, 5, 527-

MeteoSchweiz (Klimabulletin Winter 2019/2020). (2020).

PERMOS Data Portal. (2022). https://doi.org/10.13093/permo