

Katharina Scholz Katharina.Scholz@uibk.ac.at www.biomet.co.at

unding was provided through infrastructure grants by Universität nnsbruck via the research area Mountain Regions.

b S

Forests play an important role in the exchange of greenhouse gases like CO_2 and CH_4 between the and biosphere atmosphere. Although fluxes vary depending on biotic and abiotic factors like ecosystem climatic composition and conditions, forests generally are a sink for CO_2 . For CH_4 , forests with well-drained soils are considered a sink due to the oxidation of CH_4 those soils. However, within recent study results indicate that CH₄ emissions from trees may offset this soil CH_4 sink, resulting in a lower sink strength or even source at the ecosystem level. So ecosystem CH₄ flux far, measurements at upland forest sites are sparse.

Forest-Atmosphere-Interaction-Research (FAIR) site

Scots Pine forest Tree age: 102 +/- 31 years Tree height: 8.3 +/- 1.7 m

> Well drained calcareous bedrock; nutrient poor and shallow soils

 CH_4 , CO_2 , LE, and H fluxes are measured continuously at 20m height using the Eddy Covariance (EC) method. Instruments include a 3D sonic anemometer (CSAT), an enclosed infrared gas analyzer (EC155; CPEC System) and an open path CH4 gas analyzer (Li7700).

Results

Methane flux measurements above a Scots Pine forest in Austria

Katharina Scholz, Albin Hammerle, Georg Wohlfahrt Universität Innsbruck, Department of Ecology, Biometeorology Group

-a research platform of the University of Innsbruck -960 m a.s.l; lat: 47° 18.9938' N, lon: 10° 58.2053' E

Major tree species: *Pinus sylvestris* Major shrub species: Juniperus communis

2022: MAT =8.7 °C, TAP = 727 mm (**Fig. I**)

Questions

What is the CH₄ source / sink strength of a Scots pine forest ?

Can the challenges of measuring small CH₄ fluxes with an open path sensor be addressed reasonably ?

Fig.II: Most of the time, the time lag of CH_4 relative to the vertical wind velocity (w) could clearly be determined through a clear peak in the w-CH₄ cross-correlation.

The CH₄ power spectra showed larger attenuation and instrumental noise at high frequencies than CO₂. Total flux attenuation was estimated to about 21 % on average (compared to ~5 % for CO_2).

Normalized w-CH₄ cospectra showed unexpected behavior with negative values in the higher frequency range.

Fig.III: In general, CH₄ fluxes were small and showed higher variability during the day, especially when energy fluxes were high. As the open path CH_4 gas analyzer measures gas densities, fluxes have to be corrected for density and spectroscopic effects. At low flux environments (like our site), those corrections are larger than the actual CH_{4} flux.

-00:00-02:59 03:00-5:59 06:00-08:59 -09:00-11:59 12:00-14:59 15:00-17:59 -18:00-20:59 21:00-23:59

