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Abstract  

Compound dry and hot extremes (CDHE) are periods of prolonged dry and hot weather. 

Their joint occurrence typically impacts society and nature stronger compared to the 

occurrence of the single hazards. Understanding the likelihood, variability and drivers of 

CDHE is challenging due to the complexity of the climate system involving interactions 

and feedbacks among atmosphere-land processes. In this study, we first investigate the 

role of the dependence between precipitation and temperature for the likelihood of 

CDHEs. We demonstrate that both the dependence strength and its type, i.e. the degree 

of tail dependence, substantially affect the CDHE likelihood. We then analyze the space-

time variation of CDHE characteristics during the Indian Summer Monsoon across India 

for the period 1961-2014. We find strong negative association and substantial tail 

dependence between precipitation and temperature in some regions. Event coincidence 

analysis reveals that low soil moisture preconditioned by dry extremes is responsible 

for 55-65% of CDHE occurrence. Our analysis of the temporal evolution of CDHE 

characteristics finds an increasing negative association between precipitation and 

temperature leading to a 2 to 3-fold rise of CDHE frequency for some regions of India.  

 

Keywords 

Compound extremes, Dependence, Soil moisture, Indian summer monsoon, Event 

coincidence analysis, Climate change. 
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1 Introduction 

The Indian summer monsoon (ISM) is a major source of precipitation in India, and its 

decline threatens the water security of more than a billion people (Mishra et al., 2022). 

Due to global warming, India has become more vulnerable to high-impact extremes, 

such as droughts and heatwaves (Jha et al., 2022; Kulkarni et al., 2020; Rawat et al., 

2022). These events have become more frequent and intense and are anticipated to 

worsen in the future, which could result in food insecurity and economic instability 

(Gupta et al., 2020; Kathayat et al., 2022). The droughts can lead to increased 

evaporation rates due to the lack of moisture in the soil, which can exacerbate the 

drought conditions. Furthermore, the consequences of droughts can be more 

catastrophic when they coincide with heat extremes (Mukherjee et al., 2023; Yin et al., 

2023). Therefore, it is crucial to comprehensively understand the likelihood of such 

extremes in India to manage them effectively under global warming. 

The IPCC Special Report on Managing the Risks of Extreme Events and Disasters to 

Advance Climate Change Adaptation defined the simultaneous occurrence of any two 

extremes as a compound event (Seneviratne et al., 2012). Since then, many studies have 

investigated compound dry and hot events/extremes (CDHE) by applying multivariate 

statistics to observational and climate simulation data (Bevacqua et al., 2022; Meng et 

al., 2022; Ridder et al., 2021). In India, several CDHEs with a substantial reduction in 

agricultural productivity have occurred in the past 70 years, namely in 1951, 1972, 

1979, 1987, 2009, 2014 and 2015 (Mishra et al., 2020b), and more frequent occurrences 

of CDHE are expected owing to climate change (Seneviratne et al., 2021). Therefore, 

understanding the characteristics and variability of CDHE during the ISM is of utmost 

importance.  

Most previous studies have assessed CDHE by counting the simultaneous 

occurrences of dry and hot extremes, whereas dry and hot extremes are defined as 

events beyond a certain threshold (Meng et al., 2022; Wu et al., 2021). This counting 

approach quantifies CDHE frequency and spatial extent, but falls short in characterizing 

the precipitation-temperature (P-T) dependence (Wu et al., 2020). Considering 𝑃 (for 

precipitation) and 𝑇 (for temperature), CDHE can be characterized by the probability 

𝑃𝑟(𝑃 ≤ 𝑝 ∩ 𝑇 > 𝑡), where 𝑝 and 𝑡 are the thresholds of 𝑃 and 𝑇 defining the extreme 

event. This joint probability can be inferred either empirically or parametrically. The 

empirical approach utilizes plotting position formulas that are based on the number of 

paired occurrences for the period of interest (Hao and AghaKouchak, 2014). The 

parametrical approach builds on the marginal distributions of precipitation and 

temperature and on their dependence (Genest and Favre, 2007). The empirical approach 

is easy to apply and free from fitting the parametric distributions, thereby alleviating the 

computational burden (Hao and AghaKouchak, 2014). However, it cannot be used for 

extrapolating beyond observed values, and, in addition, it cannot quantify the P-T 

dependence (Raymond et al., 2020).  

The P-T dependence needs however to be considered, as globally dry (wet) summers 

tend to be associated with hot (cool) conditions (Trenberth et al., 2014). Similarly, 
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Zscheischler & Seneviratne (2017) reported a significant negative P-T dependence 

during the hottest 3-month period using observational and climate model simulations 

across the globe. This negative dependence has been explained by land-atmosphere 

interactions (Berg et al., 2015; Miralles et al., 2019). Precipitation deficits lead to soil 

moisture depletion, which in turn reduces evapotranspiration. This reduction in latent 

heat flux is largely counterbalanced by increasing sensible heat flux and upwelling 

longwave radiation, both of which are associated with higher surface temperature (Berg 

et al., 2016). Therefore, soil moisture-temperature coupling been identified as one of the 

main drivers of CDHE (Osman et al., 2022; Schumacher et al., 2022). Furthermore, Hao 

and Singh, (2020) highlighted that the P-T dependence might fluctuate under climate 

change, impacting the likelihood of CDHE. These studies demonstrate the need for a 

comprehensive assessment to understand the relationship between CDHE likelihood 

and P-T dependence.  

The Indian subcontinent has experienced regional droughts and heatwaves since the 

start of the 21st century, resulting in catastrophic impacts on society and ecosystems 

(Das et al., 2022; Ganguli, 2023). These climate-related hazards have resulted in 

economic losses of $80 billion between 1998 and 2017 and countless irreparable human 

losses (Wallemacq et al., 2018). Research by Mishra et al., (2020b) has shown that crop 

yields were significantly reduced by 146 and 111 kg/ha due to compound dry and hot 

summers in 1987 and 2009, respectively. Sharma and Mujumdar, (2017) reported an 

increasing frequency and spatial extent of CDHE at weekly time scale. Additionally 

Guntu and Agarwal, (2021) have reported a threefold increase in CDHE frequency for 

the recent period (1977–2019) relative to the base period (1951–1976), exhibiting a 

strong spatial pattern. Despite these important findings, there is a research gap in 

understanding the changes in the likelihood of compound dry and hot extremes during 

the Indian summer monsoon, particularly regarding intra-seasonal variability. To the 

authors' knowledge, this is the first study to investigate the impact of P-T dependence on 

the likelihood of CDHE occurrence during the Indian summer monsoon.  

Copulas are multivariate statistical distributions that provide a straightforward 

parametric approach to modelling the dependence between random variables (Genest 

and Favre, 2007). Recently, copulas have emerged as a preferred approach to model the 

P-T dependence at regional and global scales (Tootoonchi et al., 2022). Employing 

copulas, Zscheischler & Seneviratne, (2017) proposed the Likelihood Multiplication 

Factor (LMF) to quantify the change in CDHE likelihood when the P-T dependence is 

considered. Recent studies (Aihaiti et al., 2021; Ridder et al., 2020) have successfully 

applied LMF and found it helpful to assess the variability of CDHE at different spatial and 

temporal scales. However, further investigation is required to understand how different 

copula families and extreme levels affect LMF variation. In this paper, we build on these 

recent methodological advances to investigate the space-time variations of CDHE 

likelihood during the Indian summer monsoon. We first investigate how the nature of 

dependence, that is whether there is tail dependence, affects LMF. We then analyze the 

spatial and temporal variation of CDHE likelihood during ISM (June, July, August, and 

September, JJAS) across India for the period 1961-2014. 
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2 Data and Methods 

2.1 Data  

We use gridded monthly precipitation and temperature of the Indian mainland 

(between 680𝐸 − 980𝐸 and 80𝑁 − 370𝑁) from 1961 to 2014 provided by the University 

of Delaware (Willmott, 2000). To evaluate the role of soil moisture-temperature 

coupling, we use the gridded monthly soil moisture from the Climate Prediction Centre, 

NOAA (van den Dool, 2003). A link to access the data is provided in the data availability 

statement. Owing to the high relevance of the monsoon for agricultural production and 

water resource management, we focus on the ISM (June-September). Although there is 

substantial spatial variability in the mean annual precipitation (Fig. S1), most grid points 

receive >70% of the total annual precipitation during the ISM. To facilitate the 

discussion and interpret the results, based on previous studies (Guntu et al., 2020; 

Guntu and Agarwal, 2021), we divide the Indian mainland into ten sub-regions (Fig. 1), 

i.e., Western India (WI), North-western India (NWI), North-central India (NCI), Eastern 

India (EI), South-central India (SCI), South-eastern coastline (SEC), Konkan coast (KC), 

North-eastern India (NEI), Rain-belt Western Himalaya (RBWH) and Rain-shadow 

Western Himalaya (RSWH). To test the sensitivity of the results to the data used, we 

repeat the analysis with Bias-corrected Indian Meteorological Department (BIMD) data 

(Mishra et al., 2020a) and APHRODITE (Yatagai et al., 2012) (see data availability 

statement). These datasets have been used in various hydro-meteorological applications 

(Das et al., 2022; Kanda et al., 2020; Mallya et al., 2016) and are considered highly 

accurate and capable of capturing the spatiotemporal variability of precipitation and 

temperature over India.  
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Figure 1: Sub-regions of the Indian mainland. Each region’s name is displayed, and the type of climate regime is listed in 

parentheses.  

2.2 Bivariate method to derive CDHE likelihood 

Copulas have become a powerful tool for modeling the dependence of two continuous 

random variables and have been beneficial in separately modeling marginal and joint 

cumulative distribution functions (Ganguli and Merz, 2019; Zhang and Singh, 2019). The 

copula approach can construct the joint probability distribution flexibly in which the 

marginal distributions are independent of the dependence nature (Salvadori and De 

Michele, 2010). Consider two random variables 𝑃 (for precipitation) and 𝑇 (for 

Temperature) whose CDFs are defined as 𝑝∗ = 𝐹𝑃(𝑝) = 𝑃𝑟(𝑃 ≤ 𝑝) and  𝑡∗ = 𝐹𝑇(𝑡) =

𝑃𝑟(𝑇 ≤ 𝑡), respectively. The joint CDF of 𝑃 and 𝑇 with a copula function 𝐶 is expressed 

as (Genest and Favre, 2007) 

𝐹(𝑃𝑇)(𝑝, 𝑡) = 𝑃𝑟(𝑃 ≤ 𝑝, 𝑇 ≤ 𝑡) = 𝐶(𝑝∗, 𝑡∗; Θ)  (1) 
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Where Θ is the parameter of copula function and represents the strength of dependence. 

Using the marginal CDF, the CDHE likelihood in which precipitation is smaller than a 

certain threshold (𝑢) and temperature is larger than the threshold (𝑣) is calculated as 

(Zscheischler and Seneviratne, 2017) 

𝑃𝑟(𝑝∗ ≤ 𝑢 ∩ 𝑡∗ > 𝑣) = 𝑢 − 𝐶(𝑢, 𝑣; Θ)  (2) 

We model CDHE as simultaneous occurrence of precipitation with a non-exceedance 

probability of 0.20 and temperature with a probability of exceeding 0.80. These two 

thresholds are often used in the literature to define moderate CDHE (Hao et al., 2022; 

Wu et al., 2020), but other values (𝑢 = 0.10, 0.30 𝑎𝑛𝑑 𝑣 = 0.90, 0.70) are also used and 

similar results are achieved. According to scientific research, events where both 

variables are classified as moderately severe and above (Fig. S2) have adverse impacts 

(Mishra et al., 2020b). 

Clayton, Frank, Gumbel, and Joe are widely used copula families for compound events. 

The Frank family is only able to capture the overall dependence, while the others 

express the tail dependence (Clayton: lower tail; Gumbel, Joe: upper tail). In our study, 

the tail dependence specifically refers to the dependence between the upper and lower 

tails of the variables (Tootoonchi et al., 2022). However, we acknowledge that the tail 

dependence has a specific definition in probability theory, which is related to the 

behavior of the joint distribution function as the variables approach their extreme 

values (Manoj et al., 2022). Since precipitation and temperature during the Indian 

monsoon season are negatively dependent (Trenberth and Shea, 2005), the traditional 

version of the Clayton, Gumbel and Joe families cannot be used. Instead, their 90-degree 

rotated transformed form can be applied (Nikoloulopoulos et al., 2012). We use these 

four families (see Table S1 for an overview) and select the best-fit family by means of the 

Bayesian Information Criterion (BIC). BIC accounts for both model complexity and the 

number of observations (Tootoonchi et al., 2022). We transform the marginal 

distributions into normalized ranks to obtain a uniform distribution in the marginals. 

This is a common approach if the best-fit family must be obtained when using copulas. 

The R package Vine copula is used to fit the copulas and marginal distributions and for 

model diagnostics (Schepsmeier et al., 2015).  

 

2.3 Event Coincidence Analysis 

We apply event coincidence analysis to evaluate the coincidence between two or three 

event series and test the hypothesis of statistical interdependencies among them 

(Donges et al., 2016; Manoj et al., 2022). For a grid point (𝑋), monthly time series of 

temperature (T), soil moisture (SM) and precipitation (P) are converted into binary 

series where one denotes an occurrence of an event and zero denotes the absence of an 

event during the timestep. The T, SM and P monthly time series are represented by 

𝑋𝑇(𝑡𝑖), 𝑋𝑆𝑀(𝑡𝑗) and 𝑋𝑃(𝑡𝑘), respectively, with observations for each 𝑡𝑖, 𝑡𝑗 , 𝑡𝑘 ∈ [1, 𝑇], 

where T denotes the last timestep of the observed record. The event time series 𝑌𝑇(𝑡𝑖), 

𝑌𝑆𝑀(𝑡𝑗) and 𝑌𝑃(𝑡𝑘)  are defined as:    

 𝑌𝑇(𝑡𝑖)  = {
1, 𝑋𝑇(𝑡𝑖)  ≥ a
0,        𝑒𝑙𝑠𝑒 

  (3) 
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𝑌𝑆𝑀(𝑡𝑗)  = {
1, 𝑋𝑆𝑀(𝑡𝑗)  ≤ b

0,        𝑒𝑙𝑠𝑒 
  (4) 

𝑌𝑃(𝑡𝑘)  = {
1, 𝑋𝑃(𝑡𝑘)  ≤ c
0,        𝑒𝑙𝑠𝑒 

  (5) 

𝑎, 𝑏 and c denote the site-specific percentile cutoff for T, SM and P considering the entire 

period (see Appendix A). We use the 80th percentile (𝑎) to retain the hot extremes and 

the 20th percentile (𝑏, 𝑐) for low soil moisture and dry extremes, respectively. Using the 

CoinCalc package developed by Siegmund et al., (2017), we first evaluate the hypothesis 

that hot extremes occur simultaneously as dry extremes using the precursor coincidence 

rate (𝑃𝑐𝑟). Utilizing the conditional precursor coincidence rate (𝐶𝑃𝑐𝑟), we then test the 

hypothesis that hot extremes appear at the same time as low soil moisture if and only if 

dry extremes occurred simultaneously. 𝑃𝑐𝑟 and 𝐶𝑃𝑐𝑟 are defined as (Donges et al., 2016; 

Siegmund et al., 2017): 

𝑃𝑐𝑟 =
1

𝑁𝑇
∑ 𝐻

𝑁𝑇

𝑖=1

(∑ 𝐼[0 ∆𝑇](𝑡𝑖
𝑇 − 𝑡𝑘

𝑃)

𝑁𝑃

𝑘=1

) (6) 

𝐶𝑃𝑐𝑟 =
1

𝑁𝑇
∑ 𝐻

𝑁𝑇

𝑖=1

(∑ 𝐻 (∑ 𝐼[0 ∆𝑇](𝑡𝑗
𝑆𝑀 − 𝑡𝑘

𝑃)

𝑁𝑃

𝑘=1

) 𝐼[0 ∆𝑇](𝑡𝑖
𝑇 − 𝑡𝑗

𝑆𝑀)

𝑁𝑆𝑀

𝑗=1

) (7) 

Where 𝑁𝑇 , 𝑁𝑆𝑀 and 𝑁𝑃 are the number of events in T, SM and P event series, 

respectively, occurring at times 𝑡𝑖
𝑇 , 𝑡𝑗

𝑆𝑀 and 𝑡𝐾
𝑃 . ∆𝑇 is the temporal tolerance between the 

timing of the events. We use the instantaneous coincidence (∆𝑇 = 0), where 𝐼() is the 

indicator function and 𝐻() is the Heaviside function and their outputs are defined as 

follows: 

𝐼[0 ∆𝑇] = {
1, 𝑡𝑖

𝑇 − 𝑡𝑘
𝑃 = 0

𝑜, 𝑒𝑙𝑠𝑒
  (8) 

𝐻 = {
1, ∑ 𝐼[0 ∆𝑇](𝑡𝑖

𝑇 − 𝑡𝑘
𝑃)𝑁𝑃

𝑘=1 > 0

𝑜, 𝑒𝑙𝑠𝑒
  (9) 

The range of 𝑃𝑐𝑟 is zero to one. Zero implies that no hot extreme coincides with a dry 

extreme, and one represents the situation in which all hot extremes coincide with dry 

extremes. The procedure to calculate 𝑃𝑐𝑟 for a prototypical example is described in 

Manoj et al. (2022).  𝐶𝑃𝑐𝑟 also varies between zero to one. Zero suggests that no hot 

extremes are triggered by low soil moisture pre-conditioned by dry extremes and one 

indicates that all the hot extremes appear simultaneously with low soil moisture pre-

conditioned by dry extremes. Statistical significance is evaluated by generating an 

ensemble of 100O shuffle surrogate event series. We use a value of 0.05 as the 

significance level to reject the null hypothesis that the obtained coincidence is purely 

random (Donges et al., 2016; Siegmund et al., 2017).   
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3 Results and Discussion 

3.1 Effect of dependence on CDHE likelihood 

To quantify the effect of dependence on the likelihood, Zscheischler & Seneviratne 

(2017) defined the Likelihood Multiplication Factor (LMF) as the ratio of the probability 

of CDHE with dependence to the independent case. They illustrated the effect of 

dependence on the likelihood using the Frank copula. However, the Frank copula does 

not consider tail dependence. We extend their analysis by investigating how LMF varies 

with the nature of P-T dependence, that is, how LMF is affected by is upper/lower tail 

dependence. We illustrate the effect of dependence on LMF for different copula families. 

We generate synthetic samples consisting of 1167 pairs of precipitation and 

temperature values with uniform marginals for 30 values of the copula parameter Θ 

corresponding to Kendall rank correlation in the interval [−0.9 − 0.01]. 1167 are the 

number of precipitation and temperature grid points available on the Indian mainland, 

and 30 observations represent one climate normal (30 years). For each parameter value, 

we compute the CDHE likelihood and obtain LMF using Eq. 2. Figure 2 shows the 

theoretical variation of LMF with P-T dependence for different copula families.  The 

uncertainty estimates presented in Fig. S3 were calculated based on 1167 sequences, 

which represent the number of grid points on the Indian mainland. 

The P-T dependence strongly affects the likelihood of CDHE: With a higher (negative) 

dependence more CDHEs are expected to occur. For example, if precipitation and 

temperature are independent, the estimated number of CDHE in one climate normal 

period is one or two [(0.2 − 0.2 × 0.8) × 30 = 1.2]. However, if correlated with a value 

𝜏 < −0.28 and 𝜏 < −0.55, the occurrence of CDHE increase two- and three-fold for the 

Frank copula, as shown in Fig. 2.  

However, the number of CDHE is amplified or reduced based on the precipitation and 

temperature tail dependence. The Gumbel and Joe copulas, that is, their 90° rotated 

versions, show upper tail dependence. Hence, low precipitation values tend to occur 

with high temperature values, which translates into a higher likelihood of CDHE 

occurrence. Conversely, the likelihood of CDHE occurrence is lower when there is lower 

tail dependence between temperature and precipitation. Therefore, the strength and 

nature of the dependence, in terms of tail dependence substantially affect the likelihood 

of CDHE. 

Moreover, the impact of dependence on LMF varies for different extreme levels and 

copula families. The extreme levels, represented by the pairs (𝑢, 𝑣), indicate the level of 

rarity of the event of interest. When the level of extreme increases, the LMF also tends to 

increase. For example, a pair of (0.30,0.70) indicates an abnormal CDHE that occurs with 

a probability of 0.09 when the variables are independent. However, if the P-T 

dependence is correlated with a value 𝜏 < −0.28 and 𝜏 < −0.55, the occurrence of CDHE 

increase 1.65 and 2.28 times for the Frank copula (Fig. S4a). For the severe CDHE 

(0.10,0.90), the probability of occurrence is 0.01 when the variables are independent. 

But if correlated with a value 𝜏 < −0.28 and 𝜏 < −0.55, the occurrence of CDHE increase 

2.29 and 4.08 times for the Frank copula (Fig. S4c).  
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Therefore, a higher negative P-T dependence increases the likelihood of CDHEs, and the 

tail dependence between precipitation and temperature also affects the likelihood of 

CDHE occurrence. Furthermore, the impact of dependence on the LMF varies for 

different extreme levels and copula families. As the level of extreme increases, the LMF 

tends to increase, and different copula families exhibit different results. The Frank 

copula, for instance, shows an increase in the occurrence of CDHEs with a higher 

negative dependence, while the Gumbel and Joe copulas exhibit upper tail dependence, 

leading to a higher likelihood of CDHE occurrence.  

 
Figure 2: Effect of dependence on the Likelihood Multiplication Factor (LMF) for different copula families or their 90-

degree rotated versions (90 in parentheses). The X-axis represents the P-T dependency in terms of Kendall rank 

correlation (𝜏), the Y-axis shows by which factor the probability of CDHE occurrence is increased when considering 

dependence compared to the independent case.  

3.2 Spatial variation of CDHE likelihood  

We calculate Kendall’s Tau (𝜏) between the marginals of precipitation and temperature 

using observed monthly total precipitation and mean temperature during ISM for the 

period 1961-1990. The WMO recommends 1961-1990 to monitor climate change and 

views it as a stable reference period (Trenberth et al., 2014).  𝜏 during ISM (JJAS) varies 

considerably between -0.66 and 0.38 across India (Fig. 3a-d). Most grid points and sub-

regions (see boxplots in Fig. 4a) have a negative association between precipitation and 

temperature. The analysis reveals clear spatial patterns in the dependence between 

precipitation and temperature during the ISM season, which varies considerably across 

India. The negative association between precipitation and temperature suggests that an 

increase in temperature leads to a decrease in precipitation, which is a common feature 

of monsoon climate (Dash and Maity, 2023). In June (Fig. 3a), we find stronger negative 

dependence in Eastern India, Western India, North-central India, Konkan coast and 

North-eastern India with median correlation of -0.46, -0.40, -0.39, -0.38 and -0.37, 

respectively  (Fig. 4). However, Little dependence is found in South-eastern coastlines, 
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South-central India and Western Himalayas (Fig. 3a). The stronger negative correlation 

observed in June suggests that these regions are more susceptible to reduced 

precipitation due to higher temperatures. This could be attributed to a combined effect 

of local and large-scale circulation patterns, such as the thermal contrast between land 

and ocean , the Western Himalayan mountains, and the Indian Ocean Dipole (IOD) mode 

(Hrudya et al., 2021; Oza et al., 2022). For instance, Sankar et al., (2021) reported that 

Eastern India is known to be influenced by the Bay of Bengal branch of the monsoon, 

which is sensitive to sea surface temperature (SST) anomalies, while Western India is 

influenced by the Arabian Sea branch, which is modulated by the IOD mode.  

In July (Fig. 3b), a high negative correlation is seen across the North-Western and 

Western India with median correlation of -0.36 and -0.32, which could be due to the 

weakening of the monsoon circulation and the suppression of precipitation by an 

atmospheric high-pressure system over the region (Bhatla et al., 2016; Vázquez et al., 

2023). Compared to July, the negative dependence during August (Fig. 3c) was more 

pronounced on the Konkan coast and North-central India with a median correlation of -

0.36 and -0.32, respectively. Navale and Karthikeyan, (2023) reported that the 

westward shift of the monsoon trough is responsible for the weakening of the monsoon 

circulation. In September, a high negative dependence is found over North-western 

India and Western India with median correlation of -0.48 and -0.40, respectively. This 

could be attributed to the withdrawal of the monsoon and the increasing influence of 

westerly disturbances, which bring dry and warm air from the Arabian Sea and suppress 

precipitation over these regions (Joseph et al., 2022). In addition, Hari et al., (2022) 

reported that a strong phase of Pacific meridional mode is leading a significant increase 

in heatwave over this regions. Overall, the spatial patterns in the dependence between 

precipitation and temperature during the ISM season are influenced by a complex 

interplay of local and large-scale circulation patterns, land-sea contrasts, SST anomalies, 

and other climatic factors. We obtain very similar results using the BIMD (Fig. S5) and 

APHRODITE (Fig. S6) datasets. The robustness of the results across different datasets 

suggests that the observed patterns are not sensitive to different data sources. These 

findings have implications for understanding the influence of negative P-T dependence 

on the likelihood of CDHE occurrence its variability.  

Using the marginal distributions, we obtain the best-fit family by means of the maximum 

likelihood estimation (Fig. 3e-h). During June, the Frank family (no tail dependence) is 

the best fit for 60% of the grid points, while 25% show upper tail dependence (Joe 

family) and almost 15% show lower tail dependence (Clayton family) (Fig. S7). August 

shows very similar fractions as June. For July and September, the fraction of grid cells 

where the Frank family is preferred is clearly lower with around 40%, while the 

fractions of upper or lower tail dependence are much higher compared to June and 

August. There is a slight tendency to form spatial patterns, but these patterns are less 

well confined compared to the spatial patterns of P-T dependence and they change more 

strongly throughout the season. The grid cells with upper tail dependence are mostly 

concentrated in North-central India during June (Fig. 3e), in the North-western India 

during July (Fig. 3f), and scattered across North-central India and South-central India 
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during August (Fig. 3g) and September (Fig. 3h). Again, we obtain similar results using 

the BIMD (Fig. S5) and APHRODITE (Fig. S6) datasets revealing no sensitivity of the 

fitted copula to the different data sources.  

Using the best-fit family, we obtain the LMF, i.e. the ratio of CDHE likelihood to the 

independent case. The spatial patterns of dependence and best-fit family translate into 

spatial patterns of LMF (Fig. 3i-l), hence both the strength of dependence and type of 

dependence are important. LMF ranges from 0.1 to 4.2 (Fig. 4). For example, LMF > 3 

means that a 25-year CDHE in the independent case (𝑢 ≤ 0.2 ∩ 𝑣 > 0.8) occurs on 

average every 8 years due to the P-T dependence. Regions with relatively high LMF 

values of around 3 are found over North-central India in June (Fig. 3i), over North-

western parts in July (Fig. 3j), over South-central in August (Fig. 3k), and over Western 

India and South-central India in September (Fig. 3l). Hence, these regions have a high 

frequency of CDHE.  

This spatial variation can be linked to the negative P-T dependence during JJAS (Fig. 3a-

d). Precipitation and temperature have a negative association because the quantity of 

moisture that the air can store increases with temperature. Accordingly, as the 

temperature rises, the air can carry more water vapor and is less likely to saturate, 

which prevents precipitation from occurring. In contrast, if the temperature drops, the 

air becomes more likely to saturate, increasing the likelihood of precipitation 

(Trenberth et al., 2014; Trenberth and Shea, 2005). Another crucial factor to consider is 

the type of dependence exhibited in different regions. For example, in July, the North-

Western and Western regions of India display different dependence patterns (Fig. 3b) 

and likelihoods (Fig. 3j) of CDHE occurrence. This variation is due to the copula type that 

best fits the dependence structure in each region (Fig. 3f). Upper tail dependence is 

evident in these regions, which amplifies the likelihood of CDHE occurrence. Even 

regions with moderate negative correlation can have a higher probability of CDHE when 

upper tail dependence is present (See Fig. 2, Fig. S8). The negative P-T dependence is 

primarily driven by the feedback between soil moisture and temperature, as discussed 

in the introduction and previous studies (Hao et al., 2022; Miralles et al., 2019; Zhang et 

al., 2021). This feedback mechanism is a major contributor to CDHE, and we will explore 

the hypothesis that soil moisture-temperature coupling is a key factor in the following 

section. 
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Figure 3: Kendall’s Tau (𝜏) between monthly total precipitation and mean temperature during a) June, b) July, c) August, 

and d) September for 1961 to 1990. (e-h) Best-fit copula family (based on BIC) modelling the marginal cumulative 

distribution functions of precipitation and temperature and (i-l) Likelihood multiplication factor derived from 

respectively family.  
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Figure 4: Boxplots of Kendall’s Tau (top panel) and LMF (bottom panel) of sub-regions during June, July, August and 

September. The horizontal line shows the median, the box represents the IQR range, whiskers denote the 5th and 95th 

percentiles and points beyond the whiskers are outliers.  

3.3 Disentangling the Role of Soil Moisture-Temperature Coupling on CDHE 

Our results highlight that the occurrence of CDHE during ISM has a strong spatial 

diversity. We hypothesize that this variation is mainly caused by differences in land-

atmospheric feedback. Therefore, to disentangle the role of soil moisture-temperature 

(SM-T) coupling on CDHEs across the sub-regions, we calculate the (instantaneous) 

precursor coincidence rate (Fig. 5a-d) and conditional precursor coincidence rate (Fig. 

5e-h). For each grid point, we compute the 20th percentile for precipitation and soil 

moisture, and the 80th percentile for temperature given the monthly climatology for 

1961-1990. Using these event time series, we apply event coincidence analysis to 

complement the copula approach. Specifically, we explore whether the spatial patterns 

between these two approaches match. 𝑃𝑐𝑟 quantifies to which extent hot extremes occur 

at the same time as dry extremes. Fig. 5a-d shows the dry and hot extremes 

instantaneous coincidence rate at a 0.05 significance level during the ISM across India 

from 1961 to 1990. Grids points with 𝑃𝑐𝑟 > 0.60 (60% of hot extremes occur 

simultaneously with dry extremes) are found across North-central and Eastern India in 

June (Fig. 5a), over North-western India and South-central India in July (Fig. 5b), over 

North-central India and South-central India in August (Fig. 5c), and over Western, 

North-central, and South-central India in September (Fig. 5d). The spatial variation of 𝑃𝑐𝑟 

is in line with the spatial variation of the negative P-T dependence (Fig. 3a-d) and 

highlights the effect of the negative association between precipitation and temperature 

on CDHE likelihood.  

We use the (instantaneous) conditional precursor coincidence rate and test the 

hypothesis of whether low soil moisture pre-conditioned by dry extremes triggers hot 
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extremes or not. Fig. 5e-h illustrates the spatial variation of 𝐶𝑃𝑐𝑟 between hot extremes, 

low soil moisture and dry extremes. The spatial variation of 𝐶𝑃𝑐𝑟 follows closely the 

spatial variation of 𝑃𝑐𝑟  (Fig. 5a-d). This correspondence suggests that precipitation 

deficits result in the depletion of soil moisture which in turn aggravates high 

temperatures, leading to the simultaneous occurrence of CDHE.  

According to Rajeev et al., (2022), dry weather conditions can cause a rise in local 

temperatures over the Northwest and Southern regions of India during the ISM season, 

as soil moisture deficits lead to the conversion of incoming shortwave radiation into 

sensible heat. The study identified that the relationship between soil moisture and 

temperature is a key factor contributing to the occurrence of CDHEs in North-western 

and South-Central India. However, Mishra et al., (2022) reviewed that due to the ISM's 

intra-seasonal variability, it is challenging to assess CDHEs for the entire season. 

Therefore, the focus of this study was on the monthly timescale. The results indicated 

that CDHEs in North-western and South-central India are more likely to occur between 

July and September, excluding June. Karmakar and Misra, (2019) reported that June 

marks the onset of the ISM season, and the area experiences a significant rise in 

precipitation and a drop in temperatures during this time. The increase in precipitation 

aids in replenishing soil moisture, reducing the probability of soil moisture deficits, 

which are a significant driver of CDHEs. Additionally, Ambika and Mishra, (2019) 

reported that irrigation has made this region less vulnerable to CDHEs.  Therefore, this 

region is more susceptible to water stress during the mature and withdrawal stages of 

the season than during the onset of ISM.  

The study also identified North-Central India as a hotspot for CDHEs, with a high 

likelihood of occurrence between the onset of the monsoon (June) and the conclusion of 

the mature phase (August). This finding is consistent with a previous study by Ganeshi 

et al., (2020), which found a strong relationship between soil moisture and temperature 

in North-central India. Ratnam et al., (2016) suggested that atmospheric blocking over 

the North Atlantic leads to hot extremes over North-central India, while anomalous 

cooling in the tropical West Pacific is responsible for hot extremes over South-central 

India. In both regions, low soil moisture levels resulting from dry conditions can explain 

the occurrence of CDHEs with a probability of 0.5-0.6. 
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Figure 5: Precursor coincidence rate (𝑃𝑐𝑟) between hot and dry extremes during a) June, b) July, c) August, and d) 

September for 1961 to 1990. (e-h) shows the conditional precursor coincidence rate (𝐶𝑃𝑐𝑟) between hot extremes, low soil 

moisture and dry extremes. The colorbar represents the variation in the coincidence rate at the 95% confidence level. 
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3.4 Temporal evolution of CDHE likelihood  

In India during the past decades, an increased frequency of CDHEs with widespread 

spatial extent has been observed, particularly in North-central India and the South-

eastern coastlines (Guntu and Agarwal, 2021; Mishra et al., 2020b; Rajeev et al., 2022; 

Sharma and Mujumdar, 2017). To understand the evolving nature of P-T dependence 

over time and its impact on LMF, we compute the Kendall rank correlation and LMF for 

each 30-year period starting from the baseline period 1961-1990 with a 1-year moving 

window. For each grid cell, we thus obtain time series of length 25 (1961-1990, 1962-

1991, …, 1985-2014) for Kendall’s tau and LMF, respectively. We determine their 

temporal changes by calculating Sen’s slope (Sen, 1968) and test for trends at the 0.05 

significance level using the modified Mann-Kendall test (Hamed and Ramachandra Rao, 

1998).  

As there is a direct relationship exists between P-T dependence and LMF, an enhanced 

negative P-T dependence leads to an increase in LMF and vice versa. Figure. 6 maps the 

trends in P-T dependence and in LMF across India. Further, it exemplarily illustrates 

their time variations for four selected grid points. These grid points are randomly 

selected to show the significant increase in the negative correlation between 

precipitation and temperature during JJAS. Enhanced negative P-T dependence is seen 

over parts of South-central India and South-eastern coastlines during June (Fig. 6a), 

which contributes to a more frequent CDHE (Fig. 6e). LMF has doubled in the last 30-

year period compared to the baseline period (Fig. 6i). Guntu & Agarwal (2021) reported 

that no discernible change in precipitation is observed in these regions. The rise in 

temperature over this region is the primary factor contributing to the LMF increase. 

Negative P-T dependence in July (Fig. 6b) has mainly increased over parts of North-

central India, Eastern India, Konkan coast and North-eastern India, leading to an 

increase in CDHE likelihood (Fig. 6f) and a tripling of LMF during 1961-2014 for the grid 

point over North-central India (Fig. 6j). Mondal et al. (2015) reported that in July 

precipitation is decreasing and temperature is rising. Therefore, an increase in LMF in 

this region is attributable to changes in temperature and precipitation patterns.  

An increase in CDHE likelihood is observed over parts of North-western and North-

central India in August (Fig. 6g) attributable to increased negative P-T dependence (Fig. 

6c). For instance, a significant trend of P-T dependence with a slope of -0.20/decade has 

led to an increase of LMF slope of 1.0/decade during 1961-2014 for the grid point in 

North-western India (Fig. 6k). Previous studies (Deshpande et al., 2016; Guntu et al., 

2020; Kulkarni et al., 2020; Taxak et al., 2014) concluded that precipitation over these 

regions is decreasing, Roxy et al. (2017) suggested that this effect is a consequence of a 

large-scale decline in the transport of moisture from the Arabian Sea down the west 

coast onto the mainland, which is referred to as the weakening of monsoon circulation 

due to the eastern equatorial Indian Ocean's rapid warming. Due to an increase in 

aerosol content, Bollasina et al., (2011) found that the heat gradient between the north 

and south Indian oceans (which is responsible for the tropical circulation along the zonal 

component) is decreasing. According to Naidu et al., (2015), the number of low-pressure 

systems traveling to these regions has decreased due to a decrease in the strength of the 
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tropical easterly jet stream. Likewise, Sandeep et al. (2018) found that the poleward 

shift in ISM synoptic activity due to the warming climate is responsible for the reduction. 

The average temperature in these regions is also increasing significantly. As a result, 

decreasing precipitation and rising temperature have been identified as major drivers of 

the increased likelihood of CDHE. 

Strengthened negative P-T dependence is shown across parts of South-central India, 

Southern-eastern coastlines and North-eastern India in September (Fig. 6d) resulting in 

increased CDHE likelihood (Fig. 6h). For the grid point in South-central India (Fig. 6l), a 

three-fold rise in LMF is observed resulting from the strengthened negative dependence 

from -0.09 for the period 1961-1990 to –0.52 for 1985-2014. The results suggest that 

the negative P-T dependence has increased, indicating a higher chance of CDHE 

occurrence in these regions. Saha et al. (2022) observed a widespread increase in warm 

nights and a drop in precipitation intensity over North-Eastern India. They concluded 

that changes in the Atlantic meridional mode alter the dynamics of weather extremes in 

this region. Barman & Gokhale (2022) employed a Weather Research and Forecasting 

(WRF) model coupled with chemistry and established that aerosols are the reason for 

the decrease in rainfall activity. Using the WRF model, Lal et al. (2021) found that 

extensive changes in land use and land cover have caused temperature to rise ~0.4𝑜𝐶 

from 2002 to 2015. Similarly, Gogoi et al. (2019) indicated that LULC-induced warming 

is responsible for almost 25% of the mean temperature increase since 2001 in Eastern 

India. As a result, the increase in LMF in these regions can be attributed to both 

decreasing precipitation and rising temperature.  

Maps (Fig. 6e-h) also show some regions without changes and some with decreasing 

LMF values. The overall pattern of changes in the likelihood of CDHE in India is shown 

by the boxplots of changes in P-T dependence (Fig. 6m) and LMF (Fig. 6n) over all grid 

points during JJAS. According to the distribution of LMF/decade for June (Fig. 6n), 50% 

of the grid cells have positive trends, 25% have negative trends, and 25% have no 

trends. As much of the world's temperature continues to rise, trends in precipitation 

affect the likelihood of CDHE in the future (Bevacqua et al., 2022). We identified a 

negative association between June’s total precipitation and mean temperature waning 

over parts of North-western India and Konkan coast for June (Fig. 6e). According to a 

previous study by Subash & Sikka (2014), the precipitation in June in this region shows a 

positive trend. In July, > 70% of the grid cells exhibited an enhanced negative P-T 

dependence, while the remaining 30% exhibited a declining negative correlation (Fig. 

6m). However, a positive trend in LMF is visible only in more than 50% of the grid cells 

(Fig. 6n). The majority of grid cells with a decrease in LMF are found in Western India 

and South-central India, which is in line with rising precipitation patterns based on a 

long-term dataset (Guhathakurta et al., 2015).  

August and September see an equal distribution of changes in positive and negative 

trends in LMF (Fig. 6n). In August, the decrease in negative P-T dependence is seen 

across parts of South-central India and Konkan coast (Fig. 6c). According to Kumar et al., 

(2010) , August precipitation showed statistically significant increasing trends, implying 
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that changing precipitation is the recent major driver to the decreased likelihood of 

CDHE. In September (Fig. 6d), an increase in LMF is found over a few grid cells in North-

western India despite a decline in the negative P-T dependence. To illustrate this 

counterintuitive result, the temporal pattern of Kendall’s tau slope, best-fit family and of 

the LMF slope is shown in Fig. S8 for each 30-year period starting from the baseline 

period with a 1-year moving window for September over the grid point 

(76.750𝐸, 24.250𝑁) of North-western India. Despite a decline in the negative association 

between precipitation and temperature (Fig. S8a), a shift in the distribution type (Fig. 

S8b) led to an increase in LMF in the recent decades (Fig. S8c). Once again, we obtain 

similar results using the BIMD dataset (Fig. S9), which reveals the robustness of the 

trends to a different data source. Previous research (Guntu and Agarwal, 2021; Mishra et 

al., 2020b; Rajeev et al., 2022; Sharma and Mujumdar, 2017) reported the rising trend of 

CDHEs, but the intra-seasonal spatiotemporal variability in the likelihood of CDHE and 

the hypothesis of soil moisture-temperature coupling was never reported, highlighting 

the novel contribution of our study.  
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Figure 6: Spatial patterns of trend slope of Kendall’s tau (a-d) and of the Likelihood Multiplication Factor (e-h) for each 

30-year period starting from the baseline period 1961-1990 with 1-year moving window for June, July, August and 

September (JJAS). For selected grid cells, trends of P-T dependence (blue) and LMF (red) are shown in (i-l). Trends are 

shown for 30-year periods (blue – dashed-dotted; red – solid) and for the entire period (blue – dashed; red – dotted). Also, 

boxplots of change in Kendall’s tau per decade (m) and change in LMF/decade (n) over all grid points are showed for 

JJAS. The box represents the range between the first and third quartile, horizontal black line within the box represents the 

median, and the outermost markers on either side of the box are the minimum and maximum values. 

4 Conclusions  

We investigated the likelihood, spatial diversity and responsible mechanisms of 

Compound Dry and Hot Extremes (CDHE) occurrence during the Indian summer 

monsoon across India. Our results highlighted strong intra-seasonal and spatiotemporal 

variability in the likelihood of CDHE. For instance, we found a high likelihood of CDHE 

over North-Central India and Eastern India for June, Western India, North-Western, 

North-central India and South-central India for July, North-Central India and Konkan 

coast for August, Western India, North-Western India and South-central India for 

September. Regions with upper tail dependence primarily concentrated in North-central 
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India for June, Western India and North-western India for July, and were scattered 

across North-central India and South-central India for August and September. Event 

coincidence analysis (ECA) reveals that low soil moisture pre-conditioned by dry 

extremes is responsible for 55% to 65% of CDHE occurrence. However, ECA is a 

statistical method used to investigate the potential relationships between two or more 

time series data. ECA can identify whether certain events in one series tend to coincide 

with certain events in another series more often than expected by chance. 

Understanding the physical mechanisms of soil moisture-temperature coupling requires 

a comprehensive understanding of the underlying physical processes involved, such as 

energy and water balance in the land-atmosphere system. ECA can help to identify 

potential relationships between soil moisture and temperature, but it is not a substitute 

for a physical understanding of the mechanisms at play. The temporal evolution of the 

likelihood of CDHE occurrence confirms a 2- to 3-fold rise in CDHE from 1961 to 2014 

for several regions across India. Further research can incorporate the consequences of 

CDHE to produce more meaningful risk assessments. This research serves as a useful 

foundation for assessing the likelihood of CDHE occurrence and developing adaptation 

strategies in India amidst global warming. 
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Appendix A  

 

Figure A1: Illustration of time series of the average temperature (𝑋𝑇), average soil moisture (𝑋𝑆𝑀) and total precipitation 
(𝑋𝑃) at timesteps 𝑡𝑖 , 𝑡𝑗  and 𝑡𝑘, respectively for a specific month in one climate normal. The vertical and horizontal lines are 

included to visualize the event (𝑌𝑇 , 𝑌𝑆𝑀 , 𝑌𝑃) and the threshold (𝑎, 𝑏, 𝑐) used to define it. 
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Highlights  

 

 The likelihood of CDHE occurrence depends strongly on the strength and type of 

dependence between precipitation and temperature.   

 Dependence between low precipitation and high temperature exhibits strong space-

time variation.   

 Low soil moisture preconditioned by dry extremes contributes to CDHE occurrence 

and its spatial diversity. 

 CDHE frequency shows a 2 to 3-fold rise for some regions for the period 1961-2014. 
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