

Spatiotemporal Variation in Low Frequency Earthquake Recurrence on the San Andreas Fault

Jessica Allen (allje831@student.otago.ac.nz) and Ting Wang

Department of Mathematics and Statistics, University of Otago

1. Motivation and Objectives

- ► LFEs: low-frequency (1-10 Hz) earthquakes with small magnitudes.
- Occur adjacent to major faults in overlapping sequence forming persistent seismic tremors [4], associated with slow slip events in the phenomenon of episodic tremor and slip (e.g. [1],[2]).
- High occurrence rate and comprehensive detection of LFEs enables insights regarding more elusive earthquake processes along plate boundaries.
- ► We examine the recurrence patterns displayed by the 88 LFE families that are grouped at distinct generating locations adjacent to the San Andreas fault, and how these are affected by large earthquakes.
- We model activity migration between generating locations on the fault.

2. San Andreas LFE Data

3. Hidden Markov Models

- Describe underlying geological mechanisms with discrete time Markov chain $\{Y_t : t = 1, 2, ...\}$, satisfying first-order dependence $\mathbb{P}(Y_t|Y_{t-1},...,Y_t) = \mathbb{P}(Y_t|Y_{t-1}).$
- ▶ Hidden states Y_t take values from i = 1, ..., m (*m* state HMM).
- Time between LFE events $X_t(t = 1, 2, ...)$ depends only on current Y_t .

5. Recurrence Pattern of Continuous Events

Progression - High transition to intermediate activity (states 2 and 3) and high transition to

- generating location [3].
- ► Model time between events (log secs).

-121.0 -120.5 -120.0 Longitude

Figure 1:Locations of San Andreas LFE families. Red star indicates epicentre of 2004 Parkfield Earthquake.

4. Recurrence Pattern of Episodic Events

Figure 2: Transition probabilities between states.

- Subsystems Background activity (states 3, 5, 8 and 9) alternated with episodic bursts (states 1, 2, 4, 6, and 7).
- Accumulation of strain that is released in a burst, increased activity linked to slip movement.

Relatively constant activity rates, less impacted by slip movement?

> Figure 3:LFE events recorded in 2004 (a) classified by the Viterbi algorithm and (b) cumulative number of events. Red line indicates Parkfield earthquake on 28 September 2004.

6. Patterns of Activity Migration

- Probability of transitions in continuous time between generating locations.
- Grouped using hierarchical agglomerative clustering (Manhattan) $\sum_{i} |t_i - s_i|$ to identify locations with high interaction.

Conclusions

Differences in recurrence behaviour between LFE locations provide insights regarding fault structure and the direction/propagation of slow slip. Clustering methods summarise patterns (more complex than linear transition) in the migration of activity between spatially distinct generating locations.

References

[1] G. Rogers and H. Dragert. *Science*, 300:1942–1943, 2003.

[2] K. Obara. Journal of Geodynamics, 52:229–248, 2011.

[3] D. R. Shelly. Journal of Geophysical Research: Solid Earth, 122:3739–3753, 2017.

[4] M. Supino, N. Poiata, G. Festa, J. P. Vilotte, C. Satriano, and K. Obara. *Scientific Reports*, 10(6523), 2020.

Figure 6:LFE generating locations coloured and numbered by assigned clusters.

Acknowledgments

- The authors wish to acknowledge the use of New Zealand eScience Infrastructure (NeSI) high performance computing facilities and consulting support as part of this research. URL https://www.nesi.org.nz.
- Jessica Allen is gratefully supported by the Fanny Evans Postgraduate Scholarship for Women.