EGU23-8986

Monitoring of an Alpine landslide using dense seismic observations: **Combining Distributed Acoustic Sensing (DAS) and 1000 autonomous nodes**

Tjeerd Kiers^[a], Cédric Schmelzbach^[a], Pascal Edme^[a], Patrick Paitz^[b], Florian Amann^[c], Hansruedi Maurer^[a], Johan Robertsson^[a] ^[a] ETH Zurich - Switzerland, ^[b] Eidgenössische Forschungsanstalt WSL - Switzerland, ^[c] RWTH Aachen - Germany

Motivation

Develop new seismic strategies for landslide characterization & monitoring → To provide new tools for the assessment and mitigation of landslide risks

- **1.** Characterization of the landslide body \rightarrow Assemble a subsurface structural model
- 2. Monitoring landslide dynamics over time → Study landslide movement & driving mechanisms over time
- 3. Integrating different observables \rightarrow Exploit complementarity of different data types

The 'Cuolm da Vi' landslide

Active landslide above Sedrun (Centr. Switz.)

 Area: ~1.3 x 1.0 km & Depth: 100-200m^[1] Surface deformation rates of 5 – 30 cm / year^[1]

 \rightarrow Strong seasonal variation

Long-term surface and/or remote monitoring

- For 20 years: 8 laser reflectors (see map)
- Repeated drone surveys \rightarrow digital image correlation^[2]

"This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 955515 – SPIN ITN"

ETHzürich

Exploration & Environmental Geophysics (EEG)

Contact author: tjeerd.kiers@erdw.ethz.ch

