Simulation of water-induced seismic waveforms in glaciers through hydrodynamic modelling Jared C. Magyar¹, Anya M. Reading^{1,2}, Ross J. Turner¹, Sue Cook³

¹Physics, School of Natural Sciences, University of Tasmania, Hobart, Australia ²Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Australia ³Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia

Glacier Monitoring Using Seismic Waveforms

capable of generating a seismic response (Winberry & Aster, 2017).

Movement of water through the glacier system accounts for several seismogenic mechanisms, so seismic networks provide an opportunity to **monitor hidden and transient hydrological** events.

Model Purpose

Goal: Aid in the interpretation of seismic signals associated with glacier hydrology for increased monitoring capability of hidden and transient processes.

Approach: Develop a model that couples three-dimensional hydrodynamic simulations with wave propagation techniques to characterise the expected seismic signals from a range of hydrological events of interest for glacier dynamics.

Smoothed Particle Hydrodynamics

We choose to use **smoothed particle** hydrodynamics (SPH) to model water flow as it allows complex fluid dynamics to be modelled within a simple meshfree framework (Gingold & Monaghan, 1977; Monaghan, 2011).

$$\mathbf{F}_{i} = \sum_{j} \underbrace{V_{i} V_{j} (P_{ij} + \Pi_{ij} + T_{ij}) \nabla W_{ij}}_{\mathbf{F}_{ij}}$$

The water and surrounding solid conduit are represented by moving particles (red circles) which exert forces upon each other (black arrows, equation above) up to a given radius (dashed line) which is defined by a kernel function W. We use these forces to model the seismic response to flowing glacier water.

Seismic Wave Propagation

The forces of the water upon the surrounding conduit are used to model the seismic response at chosen seismic receiver locations (seismic velocities derived from Kohnen, 1974).

Supraglacial Meander

3-component velocities at a seismometer due to seismic body waves. Using the Cartesian coordinate system from 2 (above), the seismometer is located at (x,y,z) = (20,30,2). Events with different flow characteristics generate waveforms with distinct differences (see poster led by Ross Turner).

jared.magyar@utas.edu.au @geomagyartism @comp_antarctic

UNIVERSITY of **TASMANIA**

Plunge Pool

Conclusions

Current Limitations

signals (Gimbert et al., 2014).

Ongoing Work

surface waves.

considered here.

classification and interpretation.

References

126801

Climate Change, 8, 1044-1052. Mechanics - B/Fluids, 30(4), 360-370. 5838-5858

- Coupling a hydrodynamic model of choice with wave propagation methods allows simulation of expected seismic waveforms for a range of glacier hydrology events.
- Smoothed particle hydrodynamics (SPH) yields a flexible modelling framework where many different flow types can be generated without altering the model significantly. This allows consistency and easier comparison between event types.
- Fluid-solid interface forces can easily be extracted from SPH simulations to act as the seismic source, with filtering of these time series necessary for stable waveform computation.
- We currently exclusively model **body waves**, but expect surface waves to be important for sustained tremor-like
- Assumptions made in the SPH model mean that the water is artificially compressible, and thus not suitable for modelling resonant frequencies (Roeosli et al., 2016).
- We assume that the seismometer is located on the ice, and do not account for wave propagation across an ice-rock interface.
- This model currently only considers body wave propagation. For sustained signals, we expect significant contribution from
- A range of filtering methods (e.g. wavelets) are being considered for removing numerical noise from interface forces. We aim to explore a greater range of glacier hydrology
- geometries relevant to ice sheet dynamics than those
- This modelling framework as the potential to be used in conjunction with machine learning techniques for signal
- ¹Aster R. C. & Winberry J. P. (2017), Glacial seismology, *Reports on Progress in Physics*, 80(12),
- ²Bell R. E. et al. (2018), Antarctic surface hydrology and impacts on ice-sheet mass balance, Nature
- ³Gingold R. A. & Monaghan J. J (1977), Smoothed particle hydrodynamics: theory and application to non-spherical stars, *Monthly Notices of the Royal Astronomical Society*, 181(3), 375-389. ⁴Monaghan, J. J. (2011), A turbulence model for Smoothed Particle Hydrodynamics, *European Journal of*
- ⁵Kohnen H. (1974), The temperature dependence of seismic waves in ice, *Glaciology*, 13, 144-147. ⁶Gimbert F. et al. (2014), A physical model for seismic noise generation by turbulence flow in rivers, *Journal of Geophysical Research: Earth Surface*, 119, 2209-2238.
- ⁷Roeosli C. et al. (2016), Seismic moulin tremor, Journal of Geophysical Research: Solid Earth, 121,