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The Centipede Network E’ésm@
» https://centipede.fr/ Renag

m Founded in 2019.

m Collaborative permanent GNSS network that
aims to offer free real-time centimeter
positioning.

m Consists of more than 330 low-cost reference
stations mainly located in France.

m Nearly 500 regular users.

— Since July 2022, the raw GNSS data acquired
have been archived by the Réseau National
GNSS (Rénag) scientific network data center.

The Centipede network

— Is the Centipede network suitable for geoscience applications?
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Dataset, processing & methodology
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Dataset RESIF®
» GNSS networks Renag
e L ® Centipede (267)
/ T iéé; . ;S:aﬂ(l;) We consider stations from three reference
L T o ° Orphgon 25) GNSS networks surrounding Centipede
WW‘- 1 @f"g f, % = | stations with a radius inferior to 20 km and a
}"“‘.pt'} o 1 >~ \ difference in height inferior to 100 m:
Q : » .°~ 9 ." m 267 stations from Centipede network
e 2 a, ) s f;/ during the whole period.
,f\}.?: O S : Nﬂ’ m 118 stations from RGP, 9 from Rénag, 25
H A N from Orphéon.
[~ v/r “ d. // \
o L o " o iy We are interested in the period from 1 August
i )! {n} C to 31 December 2022.
e 5
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Processing RESIF®
» GipsyX PPP-AR processing Renag

GNSS raw data are analyzed with GipsyX in PPP-AR mode [Ber+20]:
m Final JPL orbits & clocks (30 s).
m Only GPS observations are processed, using a 30 h window centered on each day.
m Cut-off angle of 7deg; uniform weighting of carrier phase observations (1 cm).

m The troposphere is modeled thanks to VMF1 model (a priori and mapping. functions);
ZTD and horizontal gradients are estimated every 5 min as random walk processes.
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Methodology RESIF®

» IWV retrieval Renag

GNSS troposphere delays are converted into IWV using ERA5 surface pressure fields
(0.25 degx1 h) [Her+20] for ZHD computation and T, values from TU-Vienna [Boe+06].

We also used TCWYV product from ERA5 to extract IWV at each GNSS location. The
methodology is the same as used in [Bos+21].

In the following, IWV from Centipede are compared to ERA5 and reference GNSS IWV.
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IWV time series RESIF®
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m The IWV time series are in very good agreement for a large majority of stations.
m However, a small number of stations show more significant differences.
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ERA5 — Centipede

» Statistics of differences for 267 Centipede stations
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Centipede — IWV

The number of Centipede stations varies over
the period, due to a server outage (@) and a
change in the data retrieval mode (®).

The bias with ERA5 is small and stable over
time.

The standard deviation of the difference shows
a higher variability over time; the highest
values seem to correspond to periods of high
spatial variability of IWV and/or high IWV
values (@, ®, ®) and to the decreasing number
of Centipede stations available.

These statistics of the differences with ERA5
are in line with the results obtained in previous
studies using geodetic stations [Bos+21;
Din+23].
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» Geographical distribution of differences for 267 Centipede stations Renag
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m Biases and standard deviations are higher in mountainous areas.

m The correlation coefficient is lower in mountainous areas.

m In the lowlands, the differences are smaller, although some stations show significant
differences.
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Reference GNSS stations — Centipede

» Statistics of differences for 152 Centipede stations
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Centipede — IWV

m The number of Centipede stations varies over

the period, due to a server outage (@) and a
change in the data retrieval mode (®). The
number of reference stations decreased at the
end of the year due to a server outage of a
sub-network of the RGP (®).

The histogram of differences calculated by
station shows a small but statistically
significant bias (Centipede wetter than
reference networks).

As the IWV decreases, a slight reduction in this
bias is observed (@). The standard deviation of
the differences is small and stable over time;

m The correlation coefficients are close to 1, with

90% of the stations above 0.99.
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» Geographical distribution of differences for 152 Centipede stations
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m The geographical distribution of the differences is homogeneous.

m Some stations show larger differences; a possible reason for these differences will be
explained later.
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» Impact of antenna model on the differences: bias + stdev Renag
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Antennas for which a calibration is available are shown in bold in the legend

m As previously, there is no clear relationship between antenna type and deviations.
m The effect of using calibrated / documented antennas is still not apparent.
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ERAS5 & Reference GNSS stations — Centipede

» Influence of low elevation observations

m For each stations, we compute the rate of observations between 5 and 10 deg.

m The satellites with the highest biases (> 2 kg-m~2) systematically have a small rate of low
elevation observations.

— The observation configuration of some stations is not optimal due to the presence of
masks. This affects the quality of the analysis.

ERA5 — Centipede

Ref. GNSS — Centipede
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Despite a possible wet bias, Centipede data show good agreement with ERA5 and GNSS
reference network data, with mean deviations consistent with the literature.
These results confirm the high potential of low-cost GNSS networks.

m The development of such network is a real opportunity for geoscience applications,
particularly in poorly instrumented areas.

m In such areas, their contribution could be especially significant for meteorology or
climatology for which the monitoring of water vapour by GNSS is widely used.
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ORPHEON GNSS data were provided to the authors for a scientific use in the framework of the
GEODATA-INSU-CNRS convention up to be signed
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