ENVIRONMENTAL INTELLIGENCE LAB

OPERATIONS ECLIPSE SEQUENCING IN MULTIPURPOSE DAM PLANNING

M. Giuliani, W. Arnold, J. Zatarain Salazar, A. Carlino, A. Castelletti

POLITECNICO **MILANO 1863**

EGU General Assemb

G O N E U S

GROWING POPULATION INCREASES WATER-ENERGY-FOOD DEMANDS

Source: Gerland et al. (2014)

Year

DAMS ARE OFTEN USED TO SUPPORT ECONOMIC DEVELOPMENT

Source: Sterl et al. (2022)

WHICH DAM TO BUILD? WHEN? AND HOW TO **OPERATE THE SYSTEM?**

Figure adapted from Haasnoot et al. (2013)

governing the nexus

Two-part optimization of reservoir network expansion sequencing and operations

ENVIRONMENTAL INTELLIGENCE LAB

Two-part optimization of reservoir network expansion sequencing and operations

Pareto optimal policies for the coordinate operations of the 5 existing reservoirs

 $\leftarrow J^{Env} [(m^3/s)^2 x 10^6]$

Ο 0

Best Hydropower Solution (selected for sequencing optimization) Compromise Solution (selected for re-evaluation)

$$\begin{array}{c}
2.0 \\
-1.6 \\
-1.2 \\
0.8 \\
0.4 \\
0.0 \\
\end{array}$$

ENVIRONMENTAL INTELLIGENCE LAB

Two-part optimization of reservoir network expansion sequencing and operations

Pareto optimal policies for the coordinate operations of 5+1 reservoirs

Best Hydropower Solution (selected for sequencing optimization) 0 Compromise Solution (selected for re-evaluation) 0

$$\begin{array}{c}
2.0 \\
-1.6 \\
-1.2 \\
0.8 \\
0.4 \\
0.0 \\
\end{array}$$

ENVIRONMENTAL INTELLIGENCE LAB

Two-part optimization of reservoir network expansion sequencing and operations

Pareto optimal policies for the coordinate operations of 5+2 and 5+3 reservoirs

Two-part optimization of reservoir network expansion sequencing and operations

Ο

0

 $\leftarrow J^{Env} [(m^3/s)^2 x 10^6]$

Best Hydropower Solution (selected for sequencing optimization) Compromise Solution (selected for re-evaluation)

Archive of 2000+ optimal operating policies

Two-part optimization of reservoir network expansion sequencing and operations

. . .

Sequencing problem: if t > **T**: build DAM_i

Two-part optimization of reservoir network expansion sequencing and operations

OPERATING POLICY SELECTION MAY DISTORT TRADEOFFS PERCEPTION IN DAM PLANNING

Three selected policies differ in HP less than 0.01 TWh/y

ROBUSTNESS VIA COMPROMISE OPERATIONS

Reservoir Sequencing

- **Best Hydropower**
- Compromise

ROBUSTNESS VIA COMPROMISE OPERATIONS

ROBUSTNESS VIA COMPROMISE OPERATIONS

Reservoir Sequencing

- Best Hydropower
- Compromise

Operating Policy

Best Hydropower

Compromise (re-evaluation)

Shaded bands show the full range of performance re-evaluated under a 450-member synthetic hydrology ensemble

Operating policies eclipse reservoir sequencing in balancing conflicting objectives

- \bullet

Operating policies eclipse reservoir sequencing in balancing conflicting objectives

System performance is more sensitive to operational tradeoffs than climate change

- Operating policies eclipse reservoir sequencing in balancing conflicting objectives
- System performance is more sensitive to operational tradeoffs than climate change
- Integrating operations into dam planning becomes crucial for addressing multisector tradeoffs

- System performance is more sensitive to operational tradeoffs than climate change
- Integrating operations into dam planning becomes crucial for addressing multisector tradeoffs

References: Arnold, W., Salazar, J. Z., Carlino, A., Giuliani, M., & Castelletti, A. (2023). Operations eclipse sequencing in multipurpose dam planning. Earth's Future, 11, e2022EF003186

Operating policies eclipse reservoir sequencing in balancing conflicting objectives

POLITECNICO DI MILANO

DEPT. of ELECTRONICS, INFORMATION, and **BIOENGINEERING**

Matteo Giuliani matteo.giuliani@polimi.it | @MxgTeo www.ei.deib.polimi.it

HP PRODUCTION TARGETS

Osemosys TEMBA model for SAPP using projected energy demand (based on population)

PROJECTED IRRIGATION DEMANDS

ENVIRONMENTAL INTELLIGENCE LAB

AQUACROP simulation under RCP45 and considering planned irrigation expansions

PROJECTED FLOWS

 Historical (1986-2005)
 Future

SYNTHETIC FLOW

ENVIRONMENTAL INTELLIGENCE LAB

1. multimodel, multi-RCP ensemble 2. trend identification and removal 3.50 synthetic realisations (40Y each) via Cholesky decomposition 4. trend addition to synthetic trajectories

