

ROLE OF COASTAL UPWELLING IN THE GENERATION OF POTENTIAL FISHING ZONES IN THE SOUTH-WESTERN BAY OF BENGAL

I. INTRODUCTION

- Coastal Upwelling: Upward flow resulting from local alongshore wind driven offshore Ekman transport (ET).
- Alternatively, it can also be driven by coastally trapped internal Kelvin waves, in the absence of local winds.
- Coastal upwelling is the most important physical process determining the biological productivity of coastal oceans.

- Commercial fishing operations are streamlined through **Potential Fishing Zone** (PFZ) advisories, typically associated with persistent SST fronts^[2].
- Average increase in fishing success rate for different methods^[3].

II. OBJECTIVES

- Characterize PFZ occurrence in the SW Bay of Bengal
- Analyse the **connection** of PFZ generation with coastal upwelling.

Sthitapragya Ray and Debadatta Swain | Indian Institute of Technology Bhubaneswar | sr35@iitbbs.ac.in

GMAG

Role of Coastal Upwelling in the Generation of Potential Fishing Zones in the South-Western Bay of Bengal

Sthitapragya Ray, Debadatta Swain SEOCS, IIT Bhubaneswar, Bhubaneswar, India sr35@iitbbs.ac.in

This presentation participates in OSPP

Outstanding Student & PhD candidate Presentation contest

I. Introduction

Locally Forced Coastal Upwelling

- **Coastal upwelling** upward movement of nutrient rich waters along coast.
- The most important physical process driving ocean productivity.
 - Nutrient enrichment by upward vertical velocities driven by positive alongshore windstress (AWS) and resulting in offshore **Ekman Transport (ET).**
- In the **South West Bay of Bengal** peak AWS occurs in pre-monsoon and Southwest Monsoon.

Δ

Remotely Forced Coastal Upwelling

- Coastal Upwelling can also be driven by coastally trapped Kelvin waves.
- These are sea surface height variations along topographic boundaries in the ocean that propagate along these boundaries.
- They modulate the nutracline depth, sometimes bringing nutrients into the surface euphotic layer, leading to phytoplankton blooms.

Modified from Rao et al., 2010

Coastally trapped Kelvin wave propagation

Kelvin wave coastal upwelling

Commercial Marine Fishing & Potential Fishing Zones

- Total Fish Production (India): 12.60
 million metric tonnes
- Annual potential yield from the EEZ: 3.93 million tonnes
- Potential fishing zones (PFZs) are areas of fish aggregation in the ocean.
- PFZs are detected from SST (and surface Chlorophyll-a when available).

Bottom trawl

Tummala et al., 2008 18 controlled experiments	Inside PFZ	Outside PFZ
Average Catch Per Unit Effort	3464 Kgs	793 Kgs
Average net profit per vessels	Rs.68,683	Rs.14,260
Seiners: Average success rate	92 %	29 %
Gill netters: Average success rate	95 %	12 %
Bottom Trawlers: Average success rate	85 %	0 %

https://ourworldindata.org/fish-andoverfishing#methods-of-fishing

7

https://nfdb.gov.in/

Govt. of India, Ocean Valley, Pragathi Nagar (B.O), Nizampet (S.O), Hyderabad - 500090. E-mail:pfz@incois.gov.in/pfzmission@gmail.com, website: www.incois.gov.in, Phone No: 040-23895013, 040-23886031(ext) Fax No: 040-23895014

Electronic Display Board (EDB)

INCOIS PFZ Advisory

- Indian Marine Fishery Advisory System was set up to provide PFZ advisory through INCOIS.
- PFZ advisory distributed through Phone, SMS, EDBs, etc.
- Serves 3.17 lakhs of users directly or through partner organizations.

8

II. OBJECTIVES

1. Characterize PFZ occurrence in the SW Bay of Bengal

2. Analyse the connection of PFZ generation with coastal upwelling.

III. Methodology

DATA

Upwelling Indices

Kelvin wave identification

$$AWS = -\frac{abs(lat)}{lat} \left(\tau_x \cos\left(\theta - \frac{\pi}{2}\right) + \tau_y \sin\left(\theta - \frac{\pi}{2}\right) \right)$$

$$ET = \frac{AWS}{\rho f}$$

$$UI_{SST} = SST_{coast} - SST_{offshore}$$

Complex EOF Analysis of SSHA

• Hilbert Transform of data

Multi-satellite

- SVD of autocovariance matrix of complex data
- PC modes consists of lagged excitations

Frontal Analysis Methodology

SST Front Detection

Cayula Cornillon SIED (Cayula and Cornillon, 1992)

- 1. Histogram Analysis
- 2. Cohesion Test
- 3. Edge Detection
- 4. Edge Verification

Characterization of Fronts

FPI = N/C

F1: sum of number of frontal pixels in an area

Front Characterization following Belkin et al., 2009

- 1. Long term mean frontal frequency maps
- 2. Weekly Composite Frontal Maps

Frontal activity – Upwelling Index Covariation

IV. The Bay of Bengal Coastal Upwelling System

V. Potential Fishing Zones

Long term mean frontal frequency maps

Long term mean frontal gradient

16° N **Pre-monsoon** Southwest monsoon 0.0215 350 15° N 0 oosuo 0.018 14° N S 17.5[°] N 300 13° N 0 0.016 12° N 0.014 ď 25010 $11^{\circ}N$ 0.012 (my) 15.0[°] N 10° N FPI (%) ction 2000.01 150 Cradient 12.5° N 16 N Gradient 5 15° N 0 Monsool O 14° N Ś 0.006 100 13° N 0 10.0[°] N 0.004 12° N SW ΠŇ 500.002 10[°] N 80.0[°] E 80.0°E 82.5[°]E 85.0[°] E 82.5[°] E 85.0° E 79[°] E 80[°] E 81[°] E 82[°] E 79[°] E 80[°] E 81[°] E 82[°] E

13

Weekly Composite Frontal Maps: Increase in nearshore fronts in SW Monsoon

80° E 82° E 84° E 80° E 82° E

-

UI – PFZ coherence

Upwelling Index – Potential Fishing Zone Cooccurrence

- 1. Wavelet Cross-coherence: Strong Seasonal Coherence
- 2. Peak area-averaged frontal probability occurs during season of positive alongshore windstress.

VI. Conclusions

Summary

- A qualitative difference is observed between the surface thermal response of coastal upwelling to the North and South of Krishna Godavari Delta (KGD).
 - Both systems illustrate cold water accumulation at the coast.
 - However, persistent thermal fronts are only associated with the southern system.
- Area averaged frontal probability (F1) and the Wind-based upwelling index (Ekman Transport: ET) are strongly coherent over seasonal scales.
- The maximum F1 occurs during the period of peak positive ET, during the pre-monsoon and southwest monsoon period.

Implications

- This association between windstress and frontal activity can potentially allow us to estimate frontal activity based on windstress data, which can help overcome the existing data scarcity.
- Help predict potential long term shifts in the efficiency and feasibility of commercial fishing, based on climatological changes in coastal upwelling.

Refrences

1. Belkin, I. M., Cornillon, P. C., & Sherman, K. (2009). Fronts in large marine ecosystems. *Progress in Oceanography*, *81*(1-4), 223-236.

2. Bibi, F., & Métais, G. (2016). Evolutionary history of the large herbivores of south and Southeast Asia (Indomalayan Realm). *The ecology of large herbivores in south and southeast Asia*, 15-88.

3. Cayula, J. F., & Cornillon, P. (1992). Edge detection algorithm for SST images. *Journal of atmospheric and oceanic technology*, *9*(1), 67-80.

- 4. Cipollini, P. (2006). Altimetry, Sea Surface Temperature and Ocean Colour Unveil the Effects of Planetary Waves on Phytoplankton. *ESA Special Publication*, *614*, 112.
- 5. Ray, S., Swain, D., Ali, M. M., & Bourassa, M. A. (2022). Coastal Upwelling in the Western Bay of Bengal: Role of Local and Remote Windstress. *Remote Sensing*, *14*(19), 4703.

6. Ray, S., & Swain, D. (2023). A Systematic Method of Estimation of Alongshore Windstress and Ekman Transport Associated with Coastal Upwelling. *MethodsX*, 102186.

7. Tummala, S. K., Masuluri, N. K., & Nayak, S. (2008, December). Benefits derived by the fisherman using Potential Fishing Zone (PFZ) advisories. In *Remote sensing of inland, coastal, and oceanic waters* (Vol. 7150, pp. 127-138). SPIE.

Slide template created using: Photo by Aaron Ulsh from Pexels: https://www.pexels.com/photo/blue-water-2860705/