CHARACTERIZING FOREST STRUCTURE USING LIDAR AND MULTI-FREQUENCY SAR REMOTE SENSING

Marianne Böhm^{1*}, Markus Zehner¹, Konstantin Schellenberg¹, José-Luis Bueso-Bello², Paola Rizzoli², Christiane Schmullius¹ and Clémence Dubois¹

1 Department for Earth Observation, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena 2 Microwaves and Radar Institute, German Aerospace Center, Wessling, Germany * marianne.boehm@uni-jena.de

INTRODUCTION

Research Question: Which SAR frequency and polarization allows best to characterize forest structural metrics?

STUDY AREA AND DATA

sensor

band, mode + polarization

weak to mo-

Motivation: Research in ecology and biomass estimations often requires data often requires information on forest structure. Li-DAR point clouds can provide that, if they are available. Therefore, we investigate if and how forest structure can be modelled from more readily accessible SAR backscatter.

METHODS

LiDAR metrics were computed for a 25m x 25m pixel grid:

- Fractional cover, derived from ratio of vegetation to ground point counts
- **Fractional cover**, derived from ground and vegetation return intensities according to HOPKINSON & CHASMER 2009
- Standard deviation of the height distribution
- **Skewness** of the height distribution
- Vertical Complexity index as defined by VAN EWIJK et al. 2011

ire 3: Study area nich National Park hophoto: © GDI-Th;	DLR TerraSAR-X	X band SM VV, HH	2013-03-13
	Copernicus Sentinel-1	C band IW VV, VH	2017-02-23
	JAXA ALOS-2	L band FBD HH, HV	2016-02-24
pes: penStreetMap contri- ors, Natural Earth)	Riegl LMS-Q780 a (operated by Thur Management and	2017-02	

- Only deciduous broadleaved forest, as indicated by the Copernicus Forest Type map, was investigated.
- Scenes are from leaf-off conditions; SAR data match the LiDAR acquisition dates as closely as possible.

RESULTS								
	full model		Smaller models			 The best predictors were L-band HV and X- 		
	R²	RSE	Predictors from step- wise linear regression	R ²	RSE	 band vv. The best prediction was achieved for the skewness of the point distribution. 		
log(1-fc)	0.22	0.18	L_HV, X_VV	0.20	0.18	 Overall, linear relationships were weak to mo 		
fc_i	0.22	0.06	X_VV, L_HV, X_HH	0.21	0.06	derate, but very low for vertical complexity.		
std	0 22	1 69	I НV X НН	0 21	1 70	 Combining frequencies improved the explai- 		

Model selection using stepwise linear regression:

- At each step, one predictor which decreases Akaike Information Criterion (AIC) the most is added
- Leveling-off of AIC change indicates which predictors are used to build a smaller model.

skew	0.23	1.00	X_VV, L_HV, X_HH, L_HH	0.23	1.00
VCI	0.06	0.07	X_VV, L_HH, X_HH	0.06	0.07

R² and R²_{adi} are equal in the first three digits, thus only one is reported.

ned variation of the model.

DISCUSSION

- X- and L-band provide complementary information.
- High contribution of X-Band probably specific for leaf-off conditions.

Limitations:

- Some relationships, especially to L-band HV, exhibited nonlinearity.
- Only one broadleaved forest site was investigated -> limited structural diversity.
- Leaf-off period is not ideal for fractional cover estimation

CONCLUSIONS

Most forest structure is reflected in L-band HV

Figure 4: Bivariate relationships between metrics and backscatter Scatterplots with fitted line (solid) and spline smoother (dashed line). Darker colour indicates higher point density.

backscatter plus X-band, while C-Band showed the smallest association.

Based on these results, modelling forest structure purely from SAR backscatter seems not advisable. However, they point to a proportion of structure-determined backscatter variation that should be taken into account, for example in biomass studies.

References

VAN EWIJK, K. Y., TREITZ, P. M., & SCOTT, N. A. (2011): Characterizing Forest Succession in Central Ontario using Lidar-derived Indices. Photogrammetric Engineering & Remote Sensing, 77(3), 261–269. DOI: 10.14358/PERS.77.3.261

HOPKINSON, C., & CHASMER, L. (2009). Testing LiDAR models of fractional cover across multiple forest ecozones. Remote Sensing of Environment, 113(1), 275-288. DOI: 10.1016/j.rse.2008.09.012

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA