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The effect of a thermal runaway on the tectonic regime of Venus
Antonio Manjón-Cabeza Córdoba1,2,3     &        Tobias Rolf 2,4 * a.cordoba@ucl.ac.uk

Self consistent convection models with grain 
size evolution do not support a thermal runaway 
origin for a stagnant- or episodic-lid regime on 

Venus

Dislocation creep has higher activation energy 
than grain growth, and therefore dominates the 

lithospheric behavior with changing temperatures

A thermal runaway may have caused a faster 
cooling of the planet even at higher surface 
temperatures and/or non-plate tectonism 

(sluggish)

Summary

Methods

Remaining questions
• What is and what causes the current state of Venus? 
and is the greater surface temperature a cause or a 
consequence?
• Did the planet cool more efficiently due to higher 
surface temperature? And what are the implications?
• What is the role of zener pinning and other rheological 
complexities?  

• We solve the equations for conservation of 
mass, momentum and energy using StagYY2

• Composite rheology (and yield stress σyield)

• Venus does not feature plate tectonics, is 
surface temperature the reason?
• Classical hypothesis: high temperatures 
enhance grain growth and stabilize Venus 
lithosphere1 into stagnant lid
• We test this hypothesis by ‘simulating’ an 
atmospheric thermal runaway in convection 
models with grain size evolution (GSE)
• These preliminary results do not support 
for the hypothesis, but yield new interesting 
questions to be explored

Figure 1
Snapshots of two runs 
with σyield= 5x104. 

Model with 
Tsurf = 0.00 showing sub-

duction zones and rigid 
lithosphere.

Model with Tsurf = 0.20 
showing sluggish drips 
and low-viscosity lith-
osphere
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Figure 2
Tranquility vs. yield stress diagrams showing the different tectonic re-
gimes as a function of different GSE parameters.
Note that while the mobile and episodic regimes are sensitive to these pa-
rameters, the limit between the episodic regime and stagnant lid  remains 
unchanged.

Figure 3
Average steady-state properties as a 
function of yield stress and surface 
temperature. 
At low yield stresses, different surface 
temperatures do not result in different 
internal temperatures but a decreases 
in the plate-like behavior.
This latter effect is decreased at higher 
yield stresses, but an inverse correla-
tion between surface and internal tem-
perature is found instead.

Figure 4
Time series of average temperature for σyield = 5x103 (left) and σyield = 2x105 (right).
At low yield stresses, there is no systematic change of internal temperature with sur-
face temperature, but this reverses at high temperatures.
Note that the cases with σyield = 2x105 are not in steady state and therefore not repre-
sented in Figure 3• Grain Size Evolution (GSE)3

• We reach steady state and then increase 
surface temperature (Tsurf) ‘instantly’

1 2 3 4

1Bercovici, D., and Ricard, Y., 2014. Plate tectonics, damage and inheritance. Nature 508, 513-516.
2Tackley, P.J. 2008. Modelling compressible mantle convection with large viscosity contrasts in a three-
dimensional spherical shell using the yin-yang grid. PEPI 171, 7-18.
3Rozel, A., Ricard, Y., and Bercovici, D., 2011. A thermodynamically self-consistent damage equation 
for grain size evolution during dynamic recristallization. GJR 184, 719-728
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Ref.  k = 5x10-26 fG= 10-6

 fG= 10-4 - 10-7 (f(T))
 k= 5x10-25

No GSE


