
Ö
A
W

 —
A
U

S
T
R
IA

N
 A

C
A
D

E
M

Y
 O

F
 S

C
IE

N
C
E
S

2. HYBRID PLASMA APPROACH

Why hybrid? It has the advantage of a kinetic description of the
ions, e.g., resolving non-Maxwellian distribution functions, while
not being as computational expensive than fully kinetic models.

We use the global 3D hybrid model AIKEF (Adaptive Ion-Kinetic
Electron-Fluid) [3,4]: ions are treated kinetically; electrons are a
massless charge-neutralizing fluid. A Cartesian mesh grid that can
be adapted in space and time is utilized.

2.1 SIMULATION INPUT PARAMETERS

The size of the simulation box is (12x12x12) RM
3 to include all

swingby trajectories. Upstream parameters are nominal [2], IMF
direction is an equatorial Parker spiral angle [5]. The planetary
magnetic field is considered up to the octupole moment [6].

▪ Solar wind (H+) number density: 40 particles/cm3

▪ IMF direction and magnitude: (-0.8, 0.6, 0.06) * 24 nT
▪ Upstream solar wind velocity: 400 km/s
▪ Planetary magnetic field (multipole): -190 nT, -75 nT, -22 nT

We show the model results in the XZ-plane (MASO) after ~270
seconds (real time) corresponding to about 3.6 solar wind box
crossings in Fig. 2. This model handles reconnection self-
consistently through anomalous resistivity. [7]
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The BepiColombo mission is currently en route to Mercury and
performs in total six swingbys at the inner planet of the Solar
System before arriving in a final orbit around Mercury. These
swingbys pose unique science opportunities as the spacecraft
passes various regions of Mercury‘s magnetosphere.

We use a hybrid plasma model to extract proton energy profiles
during nominal upstream conditions for the BepiColombo
swingbys at Mercury between 2021 and 2025.

3 BEPICOLOMBO: SWINGBY EXPECTATION

3.1 MODELED ION ENERGY PROFILES

By extracting the modeled ion velocities data along the trajectories,
we can determine omnidirectional proton energy spectra, see Fig. 3.

1. INTRODUCTION

Mercury possesses a weak intrinsic magnetic field that is
influenced by the solar wind and Interplanetary Magnetic Field
(IMF). The resulting magnetosphere is highly dynamic due to the
proximity to the Sun.

We address the following questions:

What magnetospheric regions are expected to be seen               
during BepiColombo’s swingbys?

What is the “typical” energy profile of solar wind                        
ions penetrating Mercury’s magnetosphere?

1.1. BEPICOLOMBO SWINGBY GEOMETRIES

▪ MSB (Mercury SwingBy) 1, 2, 3: Mostly equatorial with
increasing inclination. Possible tail current sheet, magnetopause
(MP) and bow shock (BS) crossings, closest approaches outside
MESSENGER coverage

▪ MSB 4: polar trajectory passing the dawnside from the north;
MP and BS crossings

▪ (MSB 5: swingby not within Mercury’s magnetosphere)

▪ MSB 6: polar trajectory passing the tail current sheet from the
south; MP and BS crossings; possible reconnection site passage

SUMMARY & OUTLOOK

▪ Our hybrid model indicates a typical example of Mercury's
magnetosphere, with plasma boundaries and magnetospheric
region passages observed in ion energy profiles along
BepiColombo's swingbys. The used analysis method allows to
extract spectra from any ion species.

▪ Outlook: Provide field-of-view forecast scenarios that can be
used for mission/operation planning for particle detectors on
BepiColombo. Model multiple ion species (of planetary origin),
global dynamic effects and a higher resolution.
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Fig. 2: Dotted and dashed lines denote bow shock and magnetopause [1,2];
circles represent surface and core mantle boundary; a) thin black lines
correspond to plasma bulk velocity; bcd) thin black lines correspond to
magnetic field; MSB6 trajectory events in a) explained in Fig. 3

Fig. 3: Proton energy spectra (solar wind origin) along BepiColombo trajectory
of MSB12346; CA denotes the Closest Approach; as an example,
magnetospheric regions/crossings are denoted for e) MSB6 (ref. to Fig. 2)IMF
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Fig. 1: BepiColombo Mercury swingby trajectories (MSB12346) in MASO
(Mercury Anti Solar Orbital) coordinates; the equatorial plane is shown in
grey; bow shock and magnetopause models [1,2] are displayed in solid and
dotted grey lines; dots in the back-view indicate closest approaches
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