Assessing the appropriateness of different climate modelling
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Comparing NO, -induced O, radiative forcing (RF) fields
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Figure 2: scaled O, production for Lagrangian (LAG) tagging, Eulerian (EUL) tagging and perturbation (PERT) approaches

The dotted green line is an average of all O; curves from the 28 emission points (Figure 1) from 1 Lagrangian simulation. The
shaded area similarly represents the minimum and maximum range of variation of O, production from these scenarios (Figure 3).
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How do we compare the total O, produced in each
of the 3 approaches? With an area ratio!
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