

Assessing the appropriateness of different climate modelling approaches for the estimation of aviation NO_x climate effects Jin Maruhashi (J.Maruhashi@tudelft.nl)¹, Mariano Mertens², Volker Grewe^{1,2}, and Irene Dedoussi¹

¹Faculty of Aerospace Engineering, Section Aircraft Noise and Climate Effects, Delft University of Technology, Delft, the Netherlands ²Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany

AVIATION AND GLOBAL WARMING

accounts for 3-5% of all anthropogenic warming [1].

- (~67%) climate effects [1].
- by a **factor of 6 or 7** [2].
- nitrogen oxides (NO_x) emissions.

2 CLIMATE EFFECTS ESTIMATION METHODS

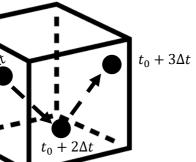
Table 1: the calculation methods – source contribution or perturbation

	Source Contribution (Tagging)	Pertu
What is it?	 Tags or labels pollutants by tracking them across chemical reactions to attribute them to specific sources [3]. Calculates the contribution of a source. 	 ★ Finds the different concentrations from with all emissions changed emission ★ Calculates the implemission strength
When to use it?	★ Estimate share of O ₃ contributed by NO _x from a sector (e.g. aviation) to the total O ₃ budget.	★ Find the impact of from changing av i.e., for assessing
Read more!	Lagrangian tagging: follow air parcels $t_{0} = t_{0} + \Delta t$	Eulerian tagging: ob $t_0 \bullet t_0$
O Advantages	 ★ Visualization of transport paths. ★ 1 simulation = 28 independent emission scenarios (efficient). 	★ More realistic detailed chemis is more suitable
Disadvantages	 ★ Linearized reaction rates (NO_x- O₃ chemistry is non-linear). ★ Simplified chemistry along trajectories. 	 More computation Unable to visual patterns.

Aircraft induce CO₂ (~33%) and non-CO₂

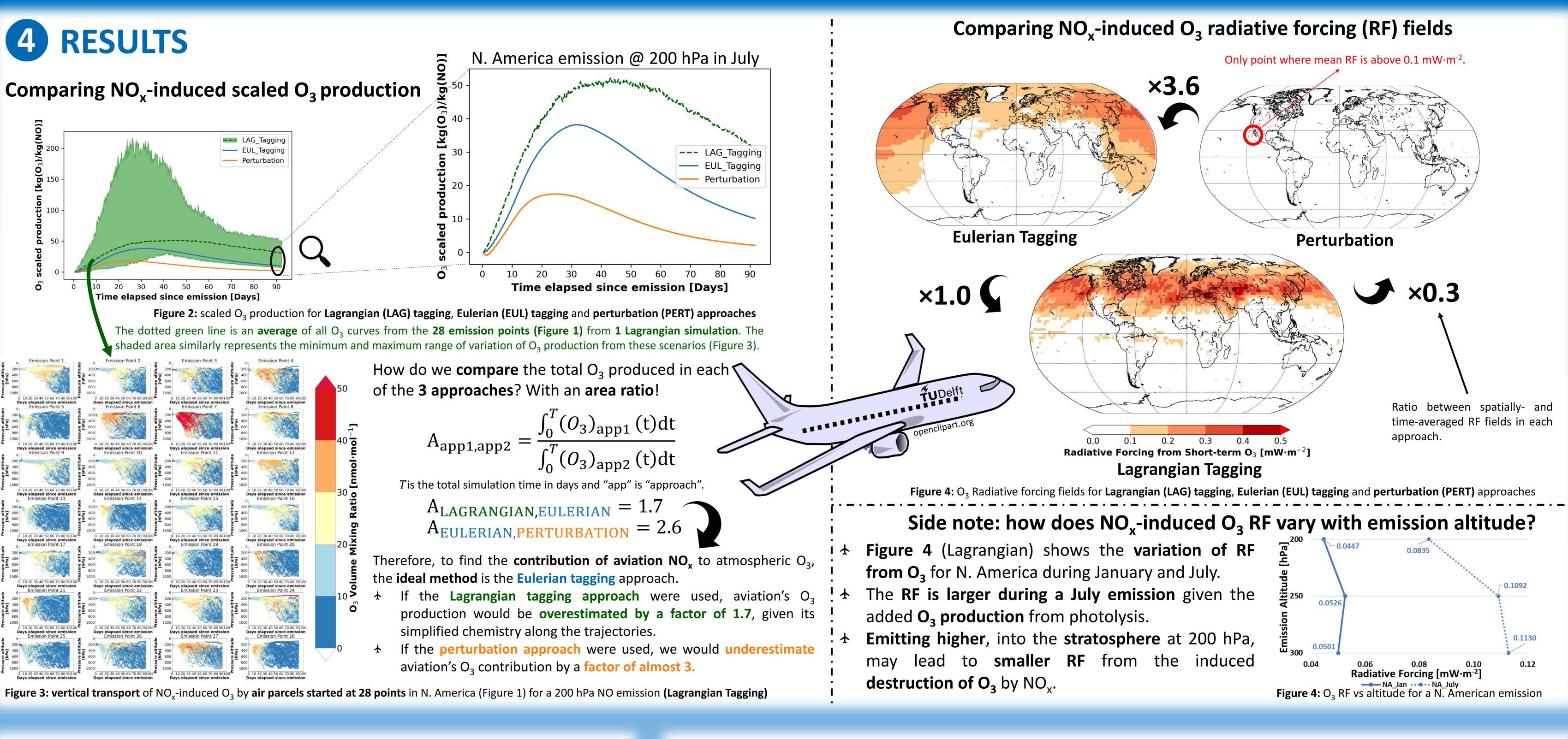
Depending on the modelling approach question, we can under or overestimate aviation's climate impact

Our focus is on the short-term ozone (O₃) production **(~50% of total warming** from aviation) [1] induced by aviation

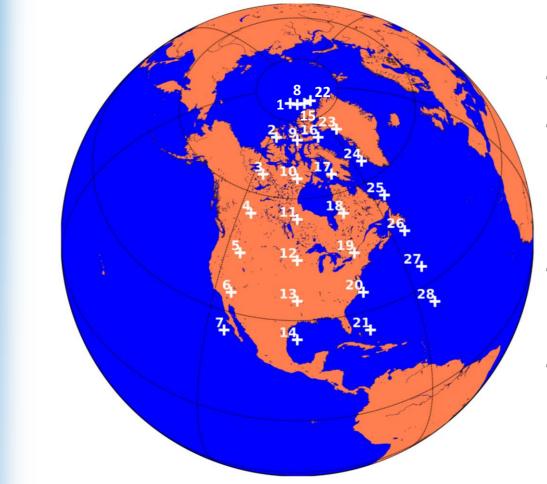

urbation

nce in pollutant rom 2 simulations: one ns and a second with ons [3]. npact by varying the

on O_3 concentration


viation NO_x emissions, mitigation options.

bserve a control volume


(non-linear) and istry available, which for $NO_x - O_3$.

tionally intensive. alize detailed transport

B THE SIMULATION SETUP

★ The ECHAM5-MESSy atmospheric chemistry model (EMAC) was used.

- Model resolution (T42L41):
- ★ 64 latitudes, 128 longitudes (2.8° × 2.8° grid) ★ 41 vertical levels (from the surface to 5 hPa) At each of the 28 points, 5×10⁵ kg of NO is emitted at **3 altitudes**: 200, 250 and 300 hPa.
- Emissions occurred in January and July of 2014.

Figure 1: the 28 emission points in North America (read more about the setup in [4])

28 emission points in **North America**.

5 CONCLUSIONS

- than a factor of 4.

REFERENCES

[1] Lee et al., 2021. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018, Atmos. Environ., 244, 117834, https://doi.org/10.1016/j.atmosenv.2020.117834, 2021. [2] Grewe et al., 2019. The contribution of aviation NO_x emissions to climate change: are we ignoring methodological flaws?, Environ. Res. Lett., 14, https://doi.org/10.1088/1748-9326/ab5dd7, 2019. [3] Mertens et al., 2020. Attributing ozone and its precursors to land transport emissions in Europe and Germany, Atmos. Chem. Phys., 20, 7843–7873, https://doi.org/10.5194/acp-20-7843-2020, 2020. [4] Maruhashi et al., 2022. Transport patterns of global aviation NO_x and their short-term O₃ radiative forcing – a machine learning approach, Atmos. Chem. Phys., 22, https://doi.org/10.5194/acp-22-14253-2022, 2022.

ACKNOWLEDGMENTS

This research is funded by the European Commission under Grant Number 875036 (ACACIA: https://www.acacia-project.eu).

The **ideal method** used to estimate aviation's climate impact **depends on our research question**. ★ If an inadequate method is used, we could significantly over or underestimate the climate effect, even by more

The linearized Lagrangian sub-model used may benefit from a correction factor of ~1.8 for more accuracy.