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4. Model Testing: Synthetic Data

3. Model Training

5. Model Testing: Real Data

2. Data & Preprocessing

High-rate Global Navigation Satellite System (HR-GNSS) provides continuous high-frequency measurements of ground
motion induced by earthquakes. This can be highly useful for parameter analyses related to the seismic source, in
particular for fast magnitude estimation of large earthquakes. The analysis of displacement waveform recorded by HR-
GNSS sensors has been adopted as a complementary task for warning systems, especially when the signals of
earthquakes recorded in inertial sensors are saturated. Hence, improving algorithms to contribute to the fast analyses of
the HR-GNSS data has become a recent challenge.
In this work, we propose a deep-learning-based algorithm for earthquake magnitude estimation, which was trained by
thousands of synthetic displacement waveforms corresponding to Mw > 6.5 earthquake signals. We adapted the model
to a variable number of stations and lengths of the time series as input. Thus, it is possible to apply the algorithm
without any restriction on the number of stations, and the flexibility in the length of the input time series facilitates the
inclusion of data not only from local stations but also from regional stations if required. The influence of attributes such
as noise, magnitude, number of stations, epicentral distance, and length of input time series on the model performance
was evaluated. We aim to generalize this approach to the magnitude estimation of earthquakes from different tectonic
regions. The robustness of the model was tested with both synthetic and real earthquake signals.

The input consists of time series from Ns number of stations, with Nt number of samples in time, and three channels:
the up (U), north (N), and east (E) directions of the GNSS sensor. For each convolutional layer, we used different
numbers of filters with kernel size (1, 3) and stride (1, 1). A zero-padding was only used in the first. The kernel is
regularized in each Conv layer. The two dense layers consist of 64 and 1 neuron, respectively. The weights of the
kernels for the two first dense layers are initialized using a normal distribution and constrained by max-norm
regularization with a maximum norm value of 3. We obtain a target variable in the output layer whose value is
equivalent to the earthquake moment magnitude Mw.

We optimized the model using the Adaptive
Moment (ADAM) estimation method to reduce the
losses and used a learning rate schedule with a
standard decay function:

decay rate = learning rate/epochs
We set the initial learning rate to 0.01, the decay to

0.1/maximum number of epochs, the maximum
number of epochs to 500, and the batch size to 128.
We used early stopping when the minimum validation
loss was reached, with a patience of 10 epochs.

Figure 1. Sequential Convolutional Neural Network (CNN) for Regression

Figure 2. Data distribution. The 
database was split into a training, 

validation, and testing set
Figure 3. Loss values during the 

training and validation 

Figure 4. The 
synthetic data 
correspond to the 
HR-GNSS stations 
shown as black 
triangles on the 
map. Hypocenters 
are shown as dots 
in color scale by 
depth. Figure 5. (a) Synthetic displacement waveforms of an earthquake Mw 8.1 and the final waveforms from the 

synthetic signal with noise. Signals with 1 Hz rate sampling. 
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We used synthetic HR-GNSS data for the model
training, validation, and testing.

These synthetic displacement waveforms were
previously generated by Lin et al. (2020), containing
36,800 earthquakes associated with rupture
scenarios specifically modeled for the Chile
subduction zone. We include those earthquakes
with Mw > 6.9.

Furthermore, we evaluated the model’s
performance using real data (Melgar & Ruhl, 2018)
of five large earthquakes from diverse regions.

Owing to the lack of noise in the synthetic data, we generated synthetic noise using the Mudpy software 
(Melgar, 2020) . We randomly included  different levels of noise in the waveforms to make the data as 
realistic as possible.

Figure 7. Epicenter of the earthquakes used for the testing with real HR-
GNSS signals

Figure 8. An example of real displacement waveforms from the Iquique 
Earthquake 2014, Mw 8.1.

Figure 6. Signal to noise ratio (SNR) vs epicentral distance, using different levels of noise. Example for 
signals of earthquakes with Mw 7.5. Only those data with a SNR higher than 3dB (dots in blue), are 

included training process.

3 dB

Figure 9. Error of magnitude estimation using synthetic HR-GNSS data from Chile Each circle
corresponds to one bin whose color represents the percentage of tests done for each real
magnitude. Plots (a), (b), and (c) are the fits of the magnitude estimations, where the RMSs are
shown by the dotted lines. The results are binned on a 0.1 magnitude grid.

We evaluated the performance
with different data from those
used for training or validation. We
set the input data with one, two ,
and three stations, to compare
how the model works in these
cases.

As we increase the number of
stations, the rms decrease.

In general, these preliminary
results with synthetic data show a
good fitting.

However, it is still necessary for
further improvements to avoid
the overestimations observed for
Mw ≤ 7.2.

Figure 10. Errors of magnitude estimations using real data.
The circles indicate the magnitude error for each group of
stations, which were defined by different random combinations.
Both the color scale and circle sizes (sorted from left to right)
depend on the median of the epicentral distances (Δ Median) of
each combination of stations, for each earthquake.

Depending on the number of available stations
for each earthquake, we grouped them to
obtain up to 500 random combinations of data
for testing purposes.

Similar to the results obtained with synthetic
data, the best estimations were achieved using
two or three stations. The preliminary model
provided satisfactory magnitude estimations
with real data.

These earthquakes served as the initial testing
for the model. However, the next step is to
further evaluate the model by utilizing real data
from additional earthquakes.

Although the DL model has demonstrated
promising results, further improvements are
required to enhance the estimation of lower
magnitudes.
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