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Quantify mixing behaviour of methanol with
water in subsurface storage reservoirs

Motivation

*Long-term storage of energy carriers is required for
transition to renewable sources scheduled in the EU [1]

* Power-to-Methanol as additional option to Power-to-Gas
to convert surplus energy into storable energy carriers
and chemical feedstock

* Methanol requires lower operational and safety
measures compared to natural gas (CH4) or hydrogen

* Main concern besides biodegradability is methanol
miscibility with water, potentially resulting in storage
losses in depleted hydrocarbon reservoirs

* Present study aims at quantitative assessment of
mixing behaviour of methanol and water based on
a reference numerical simulation benchmark

Relatively low mixing degrees after reference

Results simulation time of 180 days
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Application of reference benchmark applied in
natural gas storage to access mixing degree

Methods

X

High storage efficiencies compared to
natural gas with alternative cushion gases

Conclusions

* TRANSPORTSE [2,3] with equations of state I Xveon = 0.1 Noflow * Relatively low mixing degrees (5.1 % in maximum) compared
for methanol-water mixtures [4] applied to consider ethano! 2| constont to CH,4 storage with CO, cushion gas (up to 18.5 %, [6]) due
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» Reference benchmark for CH,4 storage [5,6] with CO,  Noflow = *77°" zone . . . -
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e Storage loss quantification depending on: 2 900+ | = £ . .
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* Syncline and anticline systems ip angle g 850 ; zZ - % . e .. .

. . . . 5 leciat 2 1.0 & * Cyclic methanol storage with injection and production

* Variations in storage formation thickness S 800F 12107 5 16x10 £ Y | g J - P

(22, 50 and 100 m) . e Y e g * Anaerobic methanol biodegradability

* Hydrodynamic dispersion 0 " Methanol mole frastion () : * Structural geologic and permeability heterogeneities
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