

Mixing behaviour of methanol stored in depleted hydrocarbon reservoirs to support the European Union energy transition

EGU23-9383

Helmholtz Centre

POTSDAM

GFZ

-	1otivation	Quantify mixing behaviour of methanol with water in subsurface storage reservoirs
 Long-term storage of energy carriers is required for transition to renewable sources scheduled in the EU [1] 		
 Power-to-Methanol as additional option to Power-to-Gas to convert surplus energy into storable energy carriers and chemical feedstock 		
 Methanol requires lower operational and safety measures compared to natural gas (CH₄) or hydrogen 		
 Main concern besides biodegradability is methanol miscibility with water, potentially resulting in storage losses in depleted hydrocarbon reservoirs 		
 Present study aims at quantitative assessment of mixing behaviour of methanol and water based on a reference numerical simulation benchmark 		

www.gfz-potsdam.de

Thomas Kempka^{1,2}

¹GFZ German Research Centre for Geosciences, Fluid Systems Modelling, Potsdam, Germany ²University of Potsdam, Institute of Geosciences, Potsdam, Germany

Contact: thomas.kempka@gfz-potsdam.de

Conclusions High storage efficiencies compared to natural gas with alternative cushion gases

- Relatively low mixing degrees (5.1 % in maximum) compared to CH₄ storage with CO₂ cushion gas (up to 18.5 %, [6]) due to lower density, viscosity and compressibility variations
- Variations in p/T conditions are negligible for methanol storage in hydrocarbon reservoirs
- Diffusion coefficient not relevant at investigated time scales
- Mixing degree decreases with increasing storage reservoir thickness, while impact of reservoir dip is negligible
- Further research requirements related to storage efficiency:
- Cyclic methanol storage with injection and production
- Anaerobic methanol biodegradability
- Structural geologic and permeability heterogeneities

(m)	 References [1] European Commission (2023) Energy Storage - Underpinning a decarbonised and secure EU energy system, online: https://energy.ec.europa.eu/system/files/2023-03/ SWD_2023_57_1_EN_document_travail_service_part1_v6.pdf [2] Kempka, T. (2020) Advances in Geosciences, 54, 67-77. https://doi.org/10.5194/adgeo-54-67-2020 [3] Kempka, T., Steding, S., Kühn, M. (2022) Advances in Geosciences, 58, 19-29. https://doi.org/10.5194/adgeo-58-19- 2022 [4] Bell, I.H., Wronski, J., Quoilin, S., Lemort, V. (2014) Indust. Eng. Chem. Res., 53, 2498-2508, https://doi.org/10.1021/ie4033999 [5] Oldenburg, C.M. (2003) Energy & Fuels, 17, 1, 240-246. https://doi.org/10.1021/ef020162b [6] Ma, J., Li, Q., Kempka, T., Kühn, M. (2019) Energy & Fuels, 33, 7, 6527-6541. https://doi.org/10.1021/acs.energyfuels.9b00518

HELMHOLTZ