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Interpolation of hydrological time series via Dynamic Mode Decomposition

SATELLITE DATA FOR SUSTAINABLE WATER MANAGEMENT

RECONSTRUCT AND BRIDGE GAPS IN HYDROLOGICAL TIME SERIES

The series is affected by some short-term gaps and a major 
interruption of approximately 1 year, due to the transition 

between the first GRACE mission (2002-2017) and the 
GRACE Follow-On mission (2018-present).

sDMD and xDMD are applied to the latest GRACE mascon solution (RL06M.MSCNv03) from the Jet Propulsion Laboratory (JPL). 
The DMD method is used to capture the information embedded in the large amount of data collected and then use it to bridge the gaps.
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The GRACE and GRACE-FO mascon solution used in this study is available at: https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/

Satellite technologies can offer massive support to the development of adaptation and mitigation strategies to face the effects of 
climate change on water availability all around the world. They provide data with improved spatial coverage and time resolution, 
but the continuity of these datasets, and therefore their applicability, is frequently compromised by gaps in the observations series.

Several studies have been dedicated to this issue, with an increasing interest in machine 
learning methods in the last decades. Recent developments in data-driven methods have 
opened up the possibility to reconstruct series learning a model directly from observations.
The majority of the proposed methods take advantage of the correlations between the 
variable of interest and some other predictors, but there exist methods where even other 
predictors databases are not needed. 

sDMD xDMD
Consider a set of snapshots of the state variable 
as it evolves in time.  Snapshots 𝐱𝑘 and 𝐱𝑘+1 are 
columns of X, X′ ∈ ℂ𝑛 x𝑚 respectively, with 
𝑡𝑘+1 = 𝑡𝑘 + ∆𝑡 and 𝑘 = 0,… ,𝑚 − 1.

The standard DMD ROM approximates
the relationship between X, X′ in
time with the best-fit linear operator
𝐀 as follows:

𝐱𝑘 ≈ 𝐀𝐱𝑘−1 .

The operator 𝐀 ∈ ℂ𝑛 x 𝑛 can be
computed as 𝐀 = X′X†, but to reduce
the computational cost the truncated
SVD of X = UΣVT is used to obtain

𝐀 ≈ X′VΣ−1UT .

The xDMD ROM approximates the relationship
between Y = X′ − X and X′ in time with the best-
fit linear operator as follows:

𝐲𝑘 ≈ 𝐁𝐱𝑘−1 + 𝐛 .

The best-fit linear operator can be computed as
[𝐁 𝐛] = Y෩X† ∈ ℂ𝑛 x 𝑛+1 , but it is more
computationally effective to compute

𝐁 𝐛 ≈ Y෩V𝑟 ෨Σ𝑟
−1෩U𝑟

𝑇 ,

where the truncated SVD of ෩X = X 1 = ෩U𝑟
෨Σ𝑟෩V𝑟

𝑇.
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Given a dynamic system 
𝑑𝐱

𝑑𝑡
= 𝐟 𝐱, 𝑡;𝑚𝑢 ,  and denoting the discrete-time flow map by evolving for ∆𝑡 as 𝐱𝑘 = 𝐅 𝐱𝑘−1 , the goal is to 

define a DMD reduced-order model (ROM), 𝓛, of the dynamic system, 𝐟, using 𝑚 snapshots in time of the solution. If the true solution at 

time 𝑡𝑘 induced by the flow map 𝐅 is 𝐱𝑘, the correspondent DMD approximation is 𝐱𝓛
𝑘 :    𝐱𝑘 = 𝐅 𝐱𝑘−1 ≈ 𝐱𝓛

𝑘 = 𝓛 𝐱𝓛
𝑘−1 .

* Between all the optimizations developed to adapt the method to different modeling situations, 
xDMD is an extension of the standard algorithm (sDMD) to face the problem of inhomogeneity

DMD could represent a new viable approach to detect patterns, extract reduced order models and predict climate-related time 
series based on previous observations, especially from high-dimensional satellite datasets.

DYNAMIC MODE DECOMPOSITION

Dynamic mode decomposition (DMD) originated in the fluid dynamics community, as a suitable 
technique for the discovery of high-dimensional, nonlinear dynamical systems, that exhibit rich 
multiscale phenomena in both space and time, directly from the data. 

This method is closely related to ARIMA models, commonly used in time-series analysis, but has the 
advantage of automatically embedding seasonal variations and capturing trends in the data. 
Similar ideas also hold in Linear Inverse Modeling, a method developed in the climate science community.

DMD decomposes high-dimensional datasets from complex dynamical systems into 
a simple representation based on spatiotemporal coherent structures. 

Given an appropriate selection of observables, DMD can be viewed as a finite-dimensional linear 
approximation of the linear, infinite-dimensional Koopman operator, that represents the action 
of a nonlinear dynamical system on the Hilbert space of measurement functions of the state.

equation-free

data-driven

simple formulation

DMD is algorithmically a 
regression of data, collected 
from a dynamical system at a 
number of times, onto locally 

linear dynamics.

Data are provided on a monthly scale as cm of 
anomalies of equivalent water thickness relative to 

the baseline mean 1/2004-12/2009.

The Earth’s gravity field variations detected by GRACE can be 
used to derive estimates of water distribution on the planet.
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Random 23 snapshots are removed from the original GRACE 
dataset to simulate time series gaps.

sDMD and xDMD are trained (truncation at 90% energy) on the 
remaining 192 snapshots and representation performance is 
tested on them.

Interpolation performance is tested on the 23 snapshots 
previously removed. 

sDMD is used to interpolate existing GRACE gaps (31 snapshots).

Global Representation & Interpolation Error
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Time Series Reconstruction

Future research will focus on improving the method performance, eventually moving from the global to the basin/regional scale.
Further important advantages are also expected to come in the second part of the work, where we plan to 

perform the decomposition of the GRACE dataset into spatio-temporal structures to analyze and interpret patterns and trends. 
Evidence from this specific application of DMD could also have positive effects on a wide range of other hydrological applications. 

This preliminary study demonstrates the viability of interpolating high-dimensional satellite datasets through the DMD method. 
Compared to other ML methods in the literature, this approach still has higher errors, but the model is global and built solely on 
GRACE available data, without correlations to other variables.

https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/

