ML-based fire hazard model trained on thermal infrared satellite data

Johanna Strebl ^{1,2}, Julia Gottfriedsen ^{1,2}, Dominik Laux ¹ Max Helleis ¹, Prof. Dr. Volker Tresp ²

> ¹ OroraTech GmbH, Munich ² LMU Munich, Department of Informatics

EGU General Assembly Session ITS1.1/NHS0.1 - AI for Natural Hazard and Disaster Management 26 April 2023

Agenda

- **1**. Motivation
- 2. Research Question
- 3. Data Sets
- 4. Methodology
- 5. Results & Discussion

Motivation

- Vicious cycle of wildfires and climate change
 - Wildfires bootstrap climate change [1]
 - Drier conditions lead to bigger fires [2]

- Why is research needed?
 - Number of wildfires keeps decreasing
 - Tree cover loss is increasing [3]

Wildfire in the Amacro region (Amazonas, Acre and Rondônia states) (Greenpeace, 2022)

Michael Jerrett, et al. Up in smoke: California's greenhouse gas reductions could be wiped out by 2020 wildfires. Environmental Pollution, 2022.
 California Department of Forestry and Fire Protection. Top 20 largest California wildfires. <u>https://www.fire.ca.gov/media/4jandlhh/top20_acres.pdf</u>
 Alexandra Tyukavina, et al., Global trends of forest loss due to fire from 2001 to 2019. Frontiers in Remote Sensing, 3, 2022.

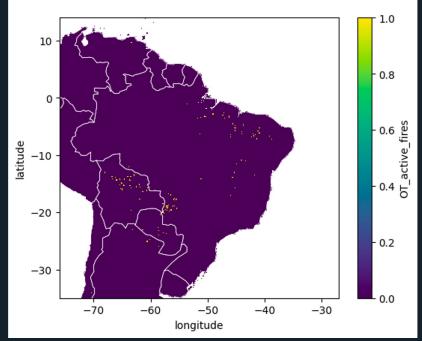
Can we model short-term wildfire risk from thermal infrared data?

Ground Truth: Active Fire Clusters

OR RA TECHNOLOGIES

- Remote sensing data from > 20 satellites
 - **MODIS**: Aqua, Terra
 - VIIRS: Suomi-NPP, Noaa-20
 - **OLI**: Landsat 8, 9
 - **SLSTR**: Sentinel 3-A, 3-B
 - ···· ···
- Near **real-time information** on **wildfire** occurrence
- Highly **imbalanced**: >99.5% not burned
- Meta data:
 - Spatial and temporal resolution depend on GSD and overpasses of detecting satellites
 - Vector data rasterized to 0.1 deg. resolution
 (≈ 11km)
 - Aggregated to daily

Active fire cluster, example for October 31, 2019



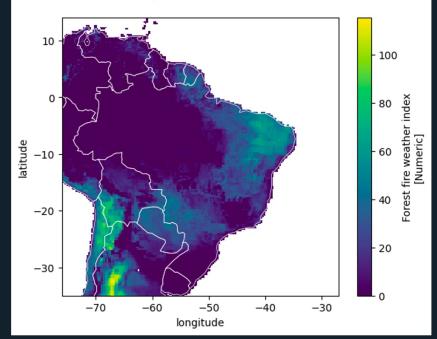
Baseline: Fire Weather Index (FWI)

• Daily **numeric rating** of fire danger:

- \circ very low: <5.2
- low: 5.2 11.2
- o moderate: 11.2 21.3
- high: 21.3 38.0
- very high: 38.0 50
- extreme: >=50.0
- Based on **weather observations** yesterday at noon
- Standard fuel type

- Meta data:
 - Resolution: 0.25 deg. (≈ 30km)
 - Interpolate to 0.1 deg. (≈ 11km)

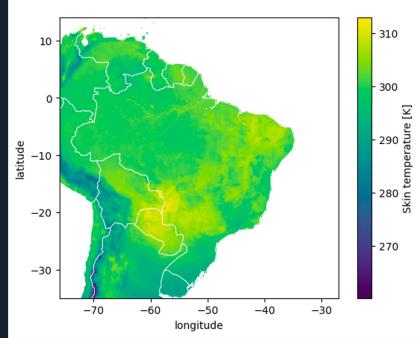
fwi, example for October 31, 2019



Weather: ERA5-Land

ECMWF

skt, example for October 31, 2019



• Wind

- eastward component
- northward component

• Temperature

- skin temperature
- 2m dew point temperature
- 2m temperature

• Additional

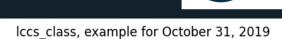
- total precipitation
- surface pressure
- surface net solar radiation

• Meta data:

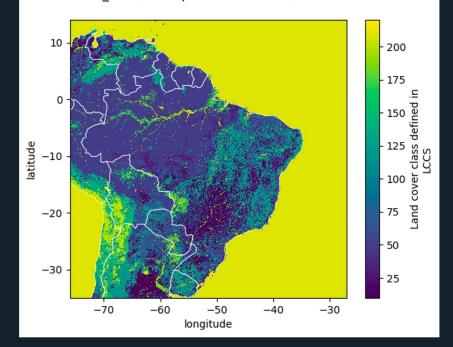
- Resolution: 0.1 deg. (≈ 11km)
- Hourly data aggregated to daily (sum or average)

Fuel: CCI Landcover

- 22 fine-grained classes of potential fuel for wildfires
- 9 combined classes
 - Agriculture
 - Forest
 - Grassland
 - \circ Wetland
 - Settlement
 - Shrubland
 - Sparse vegetation
 - Bare areas
 - \circ Water and ice
- Meta data:
 - 2020 version
 - Resolution: 0.0025 deg. (≈ 300m) down sampled to 0.1 deg. (≈ 11km)



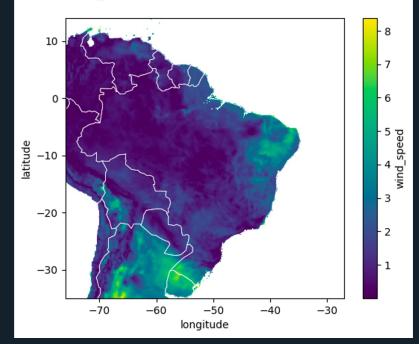
Cesa



Engineered features

- Wind speed
- Latitude
- Longitude
- Circular encoding of day of year
 - Account for seasonal variability

wind_speed, example for October 31, 2019



Final data set

Data set

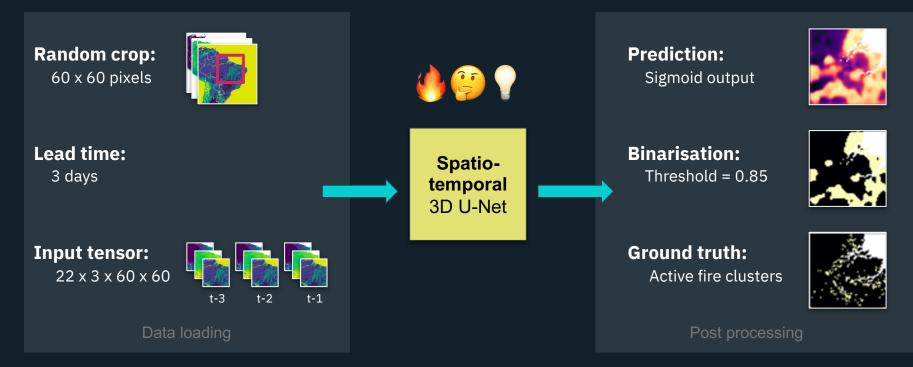
22 features:

- 8 Climatic variables
- 9 Fuel variables
- 5 Engineered features

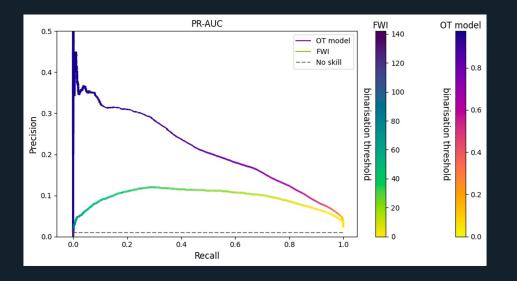
1 ground truth: Active fire clusters

Meta data	
Timeframe	October 2019 - October 2022
Temporal resolution	daily
Spatial resolution	0.1 degree (≈ 11km)

Pipeline



Results



• OT model:

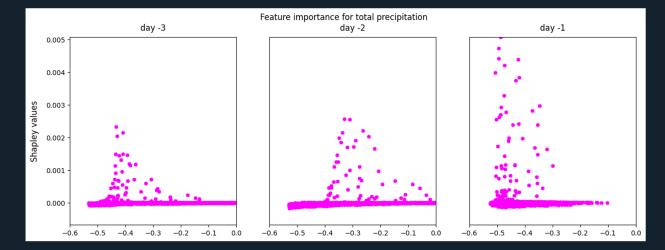
- Best binarisation threshold: **0.85**
- **F1 = 0.31**

• FWI:

- Threshold for high fire danger: 21.3
- **F1 = 0.15**

Feature importance: Shapley values

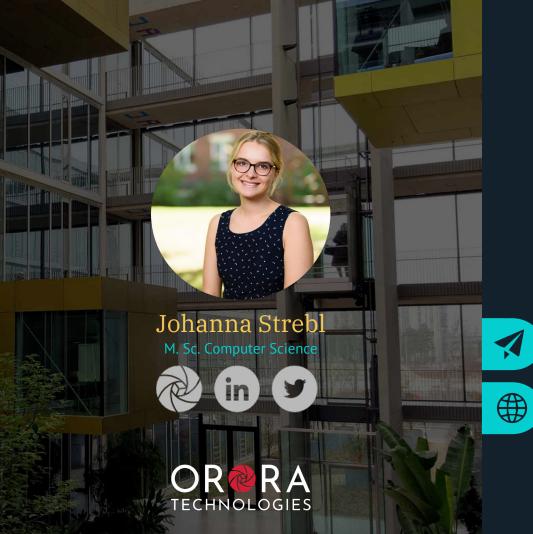
- Originate in **game theory**
- What is the contribution of each input feature to the model prediction?



- Higher Shapley values for low total precipitation closer to predicted fire
- Drier conditions increasingly meaningful in the 3 days leading up to a fire

Discussion / Outlook

- Model outperforms FWI
- Goal: overcome shortcomings of FWI
 - Include **fuel information**
 - Account for **daily and seasonal variability** in weather conditions
- Model learns **physical conditions** that influence wildfire behaviour
- Our model can easily be adapted to **other ecosystems**
- Inference on **weather forecast** instead of reanalysis



Thank you!

Special thanks to: Julia Gottfriedsen (OT), Dominik Laux (OT) , Christian Molliere (OT), Max Helleis (OT),

johanna.strebl@ororatech.com

www.ororatech.com

OroraTech GmbH

St.-Martin-Straße 112

81669 München