

Determining the Relation Between Electron-Neutral Collisions and Thermal Electron Temperature Profiles in the Mars lonosphere

1. Introduction

• This project utilizes data from the Langmuir Probe and Waves (LPW) and Neutral Gas and Ion Mass Spectrometer (NGIMS) instruments of NASA's Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft.

Figure [1]

- Mars's lonosphere can be divided into three regions dominated by distinct driving processes and trends:
 - 1. Lower lonosphere- Dominated by collisions in the neutral atmosphere
 - 2. Transition Region- Region investigated in this study
- 3. Upper Ionosphere- Driven by external transport processes • Why investigate the transition region?
 - The transition from low to high electron temperature (T_e) drives the ambi-polar electric field, which can be significant on Mars due to its weak gravity. This field pulls ions through the transition region and can accelerate them to near escape energy.

$$E_{||} = -\frac{\nabla_{||}P_e}{en_e} \qquad \qquad P_e = n_e k_b T_e$$

By understanding how the transition region changes in response to various drivers, we can understand which physical processes control E_{II} .

2. Background

- Fitting an analytical function to T_e profiles gives a description of shape and amplitude of the transition region with 4 variables. Analysis can be done with other MAVEN instruments to determine underlying physics.
- This can be done using this equation [1]

$$T_e = \frac{T_H + T_L}{2} + \frac{T_H + T_L}{2} tanh \frac{z - Z_0}{H_0}$$

- 4 variables describe the transition region:
 - T_H : Highest electron temperature of the fit
 - T_L : Lowest electron temperature of the fit
 - Z_0 : Average altitude of the transition region
 - H_0 : Altitude range of the transition region

Literature Cited

Figure [1]: NASA. (n.d.). The Maven Spacecraft. Retrieved from https://www.nasa.gov/mission_pages/maven/spacecraft/index.html.

[1]: Ergun, R. E., Andersson, L. A., Fowler, C. M., Weber, T. D., Delory, G. T., Morooka, M. W., Stewart, A. I., Mahaffy, P. R., & Jakosky, B. M. (2016). Enhanced O₂⁺ loss at Mars due to an ambipolar electric field from electron heating. Journal of Geophysical Research: Space Physics, 121(5), 4668–4678. https://doi.org/10.1002/2016ja022349

Anna Turner¹, Christopher Fowler¹, Laila Andersson² ¹ West Virginia University Department of Physics and Astronomy

X4.293 EGU23-9448 akt0001@mix.wvu.edu

• v_{en} values are largest at the

lowest altitudes sampled by

MAVEN, as expected. The

rate-of-change of collision

control the width of the

frequencies with altitude may

4. Conclusions

Preliminary results show:

on using	transition region.
d $v_{en, CO2}$ by ant at higher	$Distribution of Total Electron-Neutral Collision Frequency (Log Scale) \\ for up of Transition Region \\ for up of Up of Up of Transition Region \\ for Up of Up of Up of Transition Region \\ for Up of Up $
	There may be a correlation
requency (Log Scale)	between SZA and a larger
SZA 0°-10°	spread in v_{en} values.
- SZA 10°-20° - SZA 20°-30°	5. Future Work
	 Continue improvement and validation of <i>T_e</i> profile fits. Use the full MAVEN data set to increase amount of data available Investigate how differences in driving processes in other regions
requency (Log Scale)	drive the shape of the transition region. For example, comparing fin parameters with collision frequencies in the lower ionosphere, and with the presence
	 of electromagnetic waves in the upper ionosphere. Confirm if v_{en} span a wider ride at lower SZAs and what that means for the transition region.
requency (Log Scale) 	• Investigate if the "closeness" in collision frequency values at Z_0 -(H ₀ /2), Z_0 , and Z_0 +(H ₀ /2) controls the width of the transition region.
	6. Question for Modelers! Would a database containing analytical fits of T_e as a function of altitude and SZA be helpful to you? I so, what other parameters would you want present?