

**College of Agricultural & Environmental Sciences UNIVERSITY OF GEORGIA** 



DI PADOVA



<sup>1</sup>Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE) - University of Padvoa, Agripolis Campus, Viale dell'Università 16, 35020 – Legnaro (PD), Italy. <sup>2</sup>Department of Crop and Soil Sciences — University of Georgia, Athens Campus, 30602 — Athens, Georgia (GA), United States.

# **1. Objective**



Evaluate the effect of substrate depth, vegetation type, and irrigation level applied on greenhouse gas (CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O) (GHG) emissions and substrate temperatures from blue-green roofs (GR).

# 2. Background

- Increasing urbanization highlights the negative effects of climate change.
- •GRs can link sustainable urban development with climate change adaptation in cities through the provision of ecosystem services.
- Ecosystem services of GRs include reduction of GHG emissions and cooling of the building microclimate.



# 3. Materials and Methods

1. GHG fluxes: Fourier Transform Infrared Spectroscopy (FTIR) (The Gasmet<sup>TM</sup> DX4040).

2. Substrate temperature: Handheld soil thermometer (x3 per day.

**3.** Irrigation: Manual, 1-2 times per week.



# Diurnal greenhouse gas emissions and substrate temperatures from blue-green roofs in north-eastern Italy during the summer season Authors: Alexandra Lugo-Arroyo<sup>1-2</sup>, Giampaolo Zanin<sup>1</sup>, Aaron Thompson<sup>2</sup>, Maurizio Borin<sup>1</sup>, Carmelo Maucieri<sup>1</sup>

### **B.** Controls on Substrate Temperature.

Figure 3: Substrate depth (8 or 14 cm) as a control for substrate temperatures during the summer months [(a) June, (b) July, (c) August, (d) September].







# **5.** Conclusion and Discussion



### A. Vegetation type as a control for GHG emissions

\*Net emission of  $CO_2$  across all vegetation types, with WF being the highest emitter, and only slight differences across Sedum spp. and grass species.

\*All treatments, excluding WF, were net sources of CH<sub>4</sub>, suggesting that, in dry conditions, GRs can be a significant source of  $CH_4$ .

\*We found all treatments to be a net sink of  $N_2O_1$ , signaling a novel potential ecosystem service of GRs in dry climates.

\*N<sub>2</sub>O emissions were probably limited by a lack of soil moisture, restricting microbial activity.

### **B.** Substrate depth as a control for GHG emissions

\*Net emission of  $CO_2$  + net capture of  $N_2O$  across both substrate depths.

\*CO<sub>2</sub> fluxes increase with substrate depth due to increased capacity for organic matter accumulation.

\*Substrate depth can alter N<sub>2</sub>O fluxes by affecting N cycling dynamics, relating to substrate moisture and temperature, the amount of leachable material, and microbial habitat.

### C. Substrate depth as a control for substrate temperature

\*Shallower substrate depths dry faster + produce higher temperature fluctuations.

\*Although it was statistically significant in all months, the effect was more marked during the hotter and dryer months (July and August).