Basal conditions of Denman Glacier from hydrology modeling and their application to various friction laws UNIVERSITY OF WATERLOO

Koi McArthur¹, Felicity S. McCormack², Christine F. Dow^{1,3} Contact: kr2mcarthur@uwaterloo.ca EGU23-9497 1.Department of Applied Mathematics, University of Waterloo, Waterloo, Canada, 2. Securing Antarctica's Environmental Future, School of Earth, Atmosphere & Environment, Monash University, Australia, 3. Department of Geography and Environmental Management, University of Waterloo, Waterloo, Canada

Introduction/Methods Motivation/Plan

Basal hydrology plays an important role in basal friction/slipperiness, and hence the overall flow of ice sheets and glaciers¹. Hydrological processes are often represented in basal friction/sliding laws via the effective pressure N (ice overburden minus water pressure). However, in the absence of subglacial hydrology model outputs, N is unknown, and this may impact the basal friction coefficient field when calculated using inverse methods. We investigate the impact of basal hydrology on the basal friction coefficients of the Budd² and Schoof¹ friction laws at Denman Glacier, East Antarctica. We produce an empirical parameterization of effective pressure to use in the abscence of a hydrology model.

-Friction laws have "basal friction coefficients" which capture unknowns or uncertainties in the friction law. -Basal friction coefficients that vary significantly from constant may indicate that there are processes not well captured by the friction law.

Friction

- τ_b basal resistive stress
- α Budd friction coefficient
- N effective pressure
- u_b basal velocity
- C Schoof friction coefficient
- m = 1/3 power law exponent $C_{\rm max} = 0.8$ - Iken's bound

Objective

Goal: Test the sensitivity of the Budd and Schoof friction laws by inverting for friction coefficients while using a hydrology model output effective pressure and a typically prescribed effective pressure.

Models: Ice-Sheet and Sea-Level System Model (ISSM)⁶ running stressbalance with SSA for inversion of friction coefficients, Glacier Drainage System (GlaDS)⁷ for effective pressure output.

Denman Glacier is located in East Antarctica where its grounding line has retreated by 5.4 km since 1996³. It has the highest ice shelf melting rate in the region of 116 m/a near the grounding line⁴. Denman drains an area of 1.5 m of sea level equivalent and lies on a deep subglacial trough extending more than 3.5 km below sea level⁵. Retrograde bed slopes lying below sea level can be found in the Denman/Scott Catchment.

Fig. 1: Denman-Scott catchment. (a) Bed elevation above sea level (*m*); (*b*) Ice surface speed (*m*/a). Black lines - ISSM domain and catchment outline; Red line- the grounding line; Yellow line- the GlaDS domain.

Results

with N_o .

We thank the Digital Research Alliance of Canada for access to supercomputer resources. References: [1] Schoof (2005). DOI: 10.1098/rspa.2004.1350 [2] Budd et al. (3) 3] Brancato et al. (1996). DOI: 10.1029/2019GL086291, [4] Adusumilli et al. (2020). DOI: 10.1038/s41561-020-0616-z, [5] Morlighem et al. (2020). DOI: 10.1038/s41561-019-0510-8, [6] Morlighem et al. (2010 DOI: 10.1029/2010GL043853, [7] Werder et al. (2013). DOI: 10.1002/jgrf.20146, [8] Brondex et al. (2017), DOI: 10.1017/jog.2017.51.