Impacts of functionalized organic surfaces in Mn oxides formation in situ monitored by electron microscopy

C. Dejean (dejean@ipgp.fr), N. Ortiz Peña, B. Ménez, C. Gadal, H. Bouquerel, D. Alloyeau, A. Gélabert Institut de physique du globe de Paris, Université Paris Cité

Introduction

Biomineralization partly controls metal(loid)s cycling in subsurface environments

Mn oxides are among the strongest oxidisers at the Earth's surface

Mn oxidation is a process mainly driven microorganisms (bacteria, fungi...)

Mn-bearing minerals growth onto Escherichia coli: critical role of the chemical functions carried by cell surfaces and exopolymers (Couasnon et al., 2020).

Contribution of organic functional groups to nucleation and mineral growth?

Methods

Liquid-Cell Scanning Transmission Electron Microscopy enables to induce and monitor manganese mineralization on surfaces

