

Early Warning Systems for Infectious Disease Based on Climate and Environmental Variability

The first continental population dynamics model of the Asian tiger mosquito driven by climate and environment

Dr Kamil Erguler k.erguler@cyi.ac.cy

EGU23-9509

NH9.9

Climate-driven population dynamics of Aedes albopictus

Breeding site model

- Human population density
- Rainfall

Diapause thresholds

- Temperature
- Daylength

Density dependence

Larva and pupa survival and development

Calibrated with Emilio-Romagna surveillance data for applicability to the field conditions

Simulation time (days)

Aedes albopictus-borne arbovirus transmission model

Transmission model input

- (Relative) number of adult female mosquitoes
- Adult female mosquito lifetime
- Fecundity
- Mean air temperature

Number of vector-host interactions

- Maximum number of bites a human can stand
- Maximum number of bites a mosquito can deliver

Infectious Susceptible Exposed Recovered Infectious Exposed Susceptible epiconcer

Extrinsic incubation period (EIP)

- Temperature-driven
- Arbovirus-specific

The ArboRisk Tool

ArboRisk Interactive map Data explorer Customize scenario About

Interactive maps of *Aedes*-borne viral disease outbreak risk

Autochthonous transmission risk of *Aedes*-borne viral disease

- dengue
- chikungunya, and
- Zika

in EU/EEA, based on the dynamic transmission model of The Cyprus Institute

The ArboRisk project (2021-2022) was commissioned by the European Centre for Disease Prevention and Control (ECDC).

Harmonised continental surveillance datasets

Over 10,000 data points from continental surveillance datasets

We grouped them into 136 regular grid cells shown as blue dots

vectorbase.org/popbio-map/web/

Carrying capacity

Carrying capacity

- Increases with precipitation, land cover, and human activities
- Decreases with evaporation and breeding site removal

Suitable for container breeders

Hydrological model

 Volume of water in soil (up to 7 cm depth) used as a proxy to breeding site availability (ECMWF Integrated Forecasting System)

Suitable for wetland mosquitoes

Environmental common ground

UN WPP-Adjusted Population Density, v4.11 Copernicus Climate Change Service (C3S) Climate Data Store (CDS) Land cover classification (LCCS)

Breeding site availability and land cover

Assumption

Land characteristics similar to those around vector-positive sampling locations provide more breeding opportunities

A model for insect life cycle under variable conditions

We developed a dynamically structured population model

Development proceeds at different rates as conditions change, and the progress is recorded

Several processes can be combined to act upon a life stage

github.com/kerguler/Population github.com/kerguler/Population.jl (thanks to Sean L. Wu)

Erguler, K. et al. Sci Rep (2022

Population dynamics under variable conditions

Adults can have an Erlang-distributed lifetime and an Erlang-distributed gonotrophic cycle, both of which are climate sensitive

PopJSON

We defined a JSON-based representation for climate sensitive population dynamics models We wrote a parser in Node.js to turn PopJSON into C code Accelerates model development, and helps to prevent errors

Climate dependence of the life cycle

Climate dependence of the life cycle

Calibration on longitudinal surveillance

Climate dependence of the life cycle

Vector abundance – current and future projections

ERA5 (2010-2020)CMIP6 ssp245 (2090-2100)CMIP6 ssp585 (2090-2100)

Under development

Climate-driven vector-borne disease risk assessment

Model and data repository

Dynamic open-access repository of vector-pathogen models, climate projections, environmental variables, and surveillance data

Short/medium/long-term predictions

Risk maps, seasonal activity, temporal projections of vector activity and disease transmission

Decision support tool

Web-based interactive GIS platform to display risk, run customized scenarios, and inform prevention and control

Wellcome Trust Digital Technology Development Awards Climate-Sensitive Infectious Disease Modelling

THANK YOU

k.erguler@cyi.ac.cy

The Cyprus Institute

- Kamil Erguler
- George Zittis
- Yiannis Proestos
- George Christophides
 (Imperial College London)
 - Jos Lelieveld

(Max Planck Institute for Chemistry)

ERGO

William Wint

AviaGIS

Cedric Marsboom

