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Abstract. The creation of a 3D pore-scale model of a porous medium is often an essen-
tial step in quantitatively characterising the medium and predicting its transport prop-
erties. Here we describe a new stochastic pore space reconstruction approach that uses
thin section images as its main input. The approach involves using a third-order Markov
mesh where we introduce a new algorithm that creates the reconstruction in a single scan,
thus overcoming the computational issues normally associated with Markov chain meth-
ods. The technique is capable of generating realistic pore architecture models (PAMs), and
examples are presented for a range of fairly homogenous rock samples as well as for one
heterogeneous soil sample. We then apply a Lattice–Boltzmann (LB) scheme to calculate
the permeabilities of the PAMs, which in all cases closely match the measured values of
the original samples. We also develop a set of software methods – referred to as pore
analysis tools (PATs) – to quantitatively analyse the reconstructed pore systems. These
tools reveal the pore connectivity and pore size distribution, from which we can sim-
ulate the mercury injection process, which in turn reproduces the measured curves very
closely. Analysis of the topological descriptors reveals that a connectivity function based
on the specific Euler number may serve as a simple predictor of the threshold pressure for
geo-materials.

Key words: 3D Markov random field, Markov chain Monte Carlo, pore space reconstruc-
tion, Lattice–Boltzmann method, specific Euler number, Percolation.

1. Introduction

Quantitative characterisation of porous media at the pore scale is of funda-
mental importance in many scientific subjects, including: composite mate-
rials (Dullien, 1992, Laakkonen, 2003), rheology (Müller and Saez, 1999),
geophysics (Berryman and Wang, 2000), polymer flow through rock cores
(Sorbie et al., 1987), statistical physics (Hilfer, 2000), chemical physics
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(Spöler and Klapp, 2004), colloid science (Quiblier, 1984), petroleum engi-
neering (Kantzas et al., 1988), soil science (Crawford et al., 1995, Young
et al., 2001) and biotechnology (Wanner et al., 1995). A compelling
motivation for such studies concerns the understanding, and eventually
the prediction, of the single and multiphase transport properties of the
medium. Within the subsurface, fluid flow through porous rocks is of major
economic interest e.g. for the extraction of hydrocarbons, the exploitation
of water supplies, the disposal of nuclear wastes, etc. This paper describes
a new approach to make predictions of the transport characteristics of
porous media by reconstructing the pore space numerically from thin sec-
tions. Examples are presented for a range of rock types that span much of
the variability known for subsurface materials.

Mainstream research aimed at characterising porous media tends to
involve three major steps as follows: (i) Obtaining a representative micro-
structure for the sample of interest (i.e. the reconstruction step); (ii) A
quantitative characterisation of the microstructure which has been derived;
(iii) Exact or approximate solutions of the equations of motion that gov-
ern the transport phenomenon of interest within the pore space construc-
tion. Steps (i) and (ii) may be almost inseparable, since some methods
are based on tomographic imaging approaches. There are various ways
to predict fluid flow properties based on solving the Navier–Stokes equa-
tions, e.g. using finite difference, finite element or Lattice–Boltzmann (LB)
methods.

Previous attempts to quantitatively characterise the microstructure include
methods which analyse the tortuosity and heterogeneity of the pore system.
Typically, these approaches adopt the conventional paradigm of “pore bod-
ies” linked by smaller connections or “pore throats”. These analyses can
be based on determining the probability of pore interconnection (Marshall,
1958), on pore shape (Currie, 1961), or on variation in pore diameter (Ball,
1981). Local porosity and percolation theories have been applied to homo-
geneous sandstones (Biswal et al., 1998) to measure the geometric features
of porous media and to determine the effective transport parameters.

In realistic porous media, fluid flow at the pore scale occurs within a
complex three-dimensional (3D) network of pores. Typically, the pore net-
work is an interconnected three-dimensional array of void spaces (e.g. in
rocks, inter-granular porosity, fracture apertures, moldic porosity, etc) that
can be characterised by geometrical quantities (pore size or volume, pore
shape) and topological descriptors (pore connectivity). Progress in study-
ing transport through heterogeneous porous media has been hampered by
the difficulties involved in characterizing the complex microstructure of the
pore system of real materials. There is a lack of effective and efficient meth-
ods to generate models of the complex microstructures, due to difficulties
in analysing the precise geometry and topology of the pore system.
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Existing reconstruction approaches can be grouped into those that seek
to obtain direct images of the medium (Dunsmoir et al., 1991; Coles et al.,
1994), and those that are based on creating a model of the medium, for
example via some sort of stochastic process. Although direct measurements
of a 3D microstructure are now available via synchrotron X-ray computed
microtomography (Dunsmoir et al., 1991; Coles et al., 1994, 1996; Spanne
et al., 1994; Hazlett, 1995; Coker et al., 1996), it is often difficult and
expensive to obtain reliable “images” of the 3D pore structure. Such meth-
ods are also limited in terms of their scale of resolution, and there is a
trade-off between resolution and sample size, which in turn relates to sam-
ple representativity.

In practice, information about the microstructure of porous materials
is often limited to two-dimensional thin section images. Several techniques
have been proposed to statistically generate 3D pore structures from spa-
tial information derived from such 2D images (Joshi, 1974; Quiblier, 1984;
Adler et al., 1990, 1992; Roberts, 1997; Hazlett, 1997; Yeong and Torquato,
1998a,b; Manswart and Hilfer, 1998; Okabe and Blunt, 2004). These meth-
ods consist of measuring statistical properties, such as porosity, correla-
tion and lineal path functions, on 2D thin section images of the sample.
Random 3D models are then generated in such a manner that they match
the measured statistical properties, such as two-point correlation functions.
Recent quantitative comparisons of these models with tomographic images
of sedimentary rocks have shown that statistical reconstructions may dif-
fer significantly from the original sample in their geometric connectivity
(Hazlett, 1997; Biswal et al., 1999; Manswart et al., 2000; Øren and Bakke,
2003).

In a different approach to the stochastic generation of 3D pore struc-
tures, Bakke and Øren (1997) have developed a process-based reconstruc-
tion procedure which directly models the particle sedimentation process.
This approach incorporates grain size distribution and other petrograph-
ical data obtained from 2D thin sections to reconstruct 3D sandstones.
Øren and Bakke (2002) applied their procedure to reconstruct Fontaine-
bleau sandstone, but this method involves intensive computing.

Another approach is to ignore the detailed structure of the porous
medium and simply to represent the microstructure by an interconnected
network based on the assumption that larger pores (pore bodies) are con-
nected by smaller pores (throats) (Fatt, 1956; Kantzas et al., 1988; Øren
and Pinczewski, 1992; McDougall and Sorbie, 1995; Blunt et al., 1995;
Keller et al., 1997; Øren et al., 1994; Pereira et al., 1996; Mani and
Mohanty, 1998; van Dijke and Sorbie 2002). Within such network models,
it is possible to define a distribution of pores and throats so that the model
reproduces various aspects of two- and three-phase flow behaviour. Net-
work models have quite successfully reproduced and explained a number of
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experimental observations in two-phase (McDougall and Sorbie, 1995) and
three-phase systems (van Dijke et al., 2004) based on the relevant pore-
scale physics. However, they have had limited success in a priori predicting
the transport properties of realistic porous media.

Typically, most network models assume that the pore structure is ran-
dom and that the various pore elements (i.e. the bonds or bonds + nodes)
have an idealized geometry. There have been few attempts to construct
pore networks that replicate the true detailed microstructure of the porous
medium. In those cases, the simulations using stochastic networks pro-
vided a poor representation of the results from the direct network replica
(Manswart et al., 2000; Øren and Bakke, 2003). To date, there is no direct
and unique link between images of the porous medium and the creation of
suitable networks.

In summary, the existing microstructure models are either not very
good or highly simplified representations of rock samples or they involve
intensive computations to quantify even relatively homogeneous sandstone
structures. Even the latter method encounters difficulties in representing the
morphology of real materials. Therefore, a new method is needed to rep-
resent a wide range of heterogeneous porous media, in a relatively cheap
way, which will allow us to gain improved understanding of flow processes
in these media.

This paper outlines a new reconstruction method that belongs to the
class of stochastic pore space modelling. The new method creates recon-
structions of a heterogeneous (possibly) porous medium using Markov
Chain Monte Carlo (MCMC) simulation. It considers spatial structure
information (derived from 2D or 3D sample data – specifically, thin section
data in the x, y and z planes) that identifies all the transition probabilities
between the voids and solids of the medium for a given local training lat-
tice stencil. The input data is taken from image analysis, but our approach
differs in one very important respect from published two-point (or multi-
point) correlation methods (e.g. Okabe and Blunt, 2004). The method that
we have developed involves a complicated multiple-voxel interaction scheme
(a high-order neighborhood system) to generate individual realisations that
have structure characteristics matching the input data. This MCMC recon-
struction approach and the models it generates are referred to as “pore
architecture models”, or PAMs.

In addition to the reconstruction method to produce the PAMs, we have
also developed a set of tools – referred to as “pore analysis tools” or
PATs – to quantitatively analyse the geometry and topology of the pore
system of the reconstructed material. The reconstructed pore scale models
(PAMs) are used as direct input flow simulations, which allows us to com-
pute transport properties, such as permeability (using a Lattice–Botlzmann
method) and mercury invasion capillary pressure curves (using an invasion
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percolation algorithm). This represents a step towards the validation of our
approach. Work which is currently underway will link the derived pore net-
work systems (PAMs) to network modelling approaches that can derive
higher-order and more difficult to predict, properties, such as multi-phase
flow characteristics.

2. Model Development

2.1. background – markov random fields

The method proposed in this paper originates from image processing
research, where Markov Random Fields (MRFs) are widely used (Geman
and Geman, 1984). MRF theory is based on using only a small number
of local conditions to predict global features based on given images. In
other words, it considers the interaction (or dependence) of a few local
neighbours, and some other geometrical descriptors, to generalise the over-
all morphological features of the image, which in this case is the porous
medium. In typical usage, the image is pixelated, and the probability of
each pixel being in a particular state (black or white, for example) is
determined (or conditioned) by means of a transition matrix of condi-
tional probabilities that is determined from the training (prior) image. (The
phrases “dependence”, “conditioned” and “prior” are the formal terms
used in stochastic analysis).

One of the problems usually associated with MRFs (Geman and
Geman, 1984) is, as for all conventional Markov Chain algorithms treat
each pixel individually at each stage, that they are essentially iterative and
involve intensive computations, particularly in 3D. However, there is a class
of MRFs, called Markov Mesh Random Fields (MMRF), in which only
a single-pass simulation is required. In contrast, the scanning algorithm
updated the image a line (row or column) of pixels at a time. Conver-
gence was much faster, theoretically, and typical simulated samples were
visually more appealing (Qian and Titerington, 1991a). That approach was
used previously to develop a method for reconstructing 2D thin section
images (Wu et al., 2004), and is the basis for the 3D algorithms described
here. Extension of the Markov chain model from 2D to 3D is crucial, par-
ticularly because interframe, as well as intraframe, associations must be
modelled.

If 3D information is available to “image” the medium (e.g. a 3D tomo-
graphic scan), it is possible to extract the geometry of the pore system
using one of several methods (e.g. Øren et al., 1998; Liang et al., 2000;
Silin et al., 2003; Lindquist et al., 2000). The new approach described here
is also applicable in those cases. However, as mentioned above, 3D images
are not always reliable in that they are expensive to acquire; and there
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are limits in terms of size/resolution. On the other hand, 2D thin section
images are cheap and easy to obtain from rock samples e.g. collected from
outcrops, off-cuts from core plugs and even from drill cuttings. In addition,
it is possible – using simple optical techniques – to identify the components
of the medium (minerals comprising the grains, clay and microbial distri-
bution, etc). Direct imaging techniques such as X-ray tomography do not
accomplish this task. Confocal microscopy techniques could, in principle,
identify the mineral components of the grains, but we are not aware of this
being done in the context of reconstructing a porous rock.

In recent years, there have been many attempts to develop effective pro-
cedures for reconstructing 3D porous media from 2D thin section images
(Quiblier, 1984; Adler et al., 1990; Roberts, 1997). Our approach is also
based on the use of thin section images (or equivalent SEM scans, or other
data arrays that depict geometric patterns), and can take advantage of the
identification of the separate components (e.g. clays).

Developments in stereology have helped the whole research community
to appreciate that a 2D image is not completely representative of the 3D
medium. However, our method uses 2D information from three perpendic-
ular cross-sections (ideally), which implicitly sample the topological char-
acteristics of the 3D medium, to build our 3D models. Based on this idea,
we have developed a new method to generate model structures that have
topological properties that are similar to the original sample (as revealed in
the thin sections). To be more specific, we use the set of three perpendicu-
lar images, obtained from a single rock sample, as a prior that determines
the transition probabilities controlling the Markov Chain process that we
describe more fully below.

The remainder of this section of the paper consists of four sub-parts.
The model development is described first, where we outline the concepts
underlying Markov Mesh models, and specify the assumptions. In the next
part, the new scanning algorithm is described, and the MCMC method is
explained. Then descriptions of a selection of rock models created using the
approach are presented. Finally, we introduce some results obtained using
those models as input to flow simulations. These flow results represent a
preliminary validation of the model since a comparison of simulated per-
meability and laboratory-derived values are very close.

2.2. 3D markov chain model

To describe the probability distribution function (PDF) that is used for
characterising the microstructure (i.e. the texture) of the medium, we use
the following notation. Suppose we have a finite array (lattice) of n vox-
els, the sample space, that are labelled by integers i = 1, . . . , n. Let X =
(X1, . . . ,Xn) be the “state/colour” of the voxels, where Xi represents the
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event that site i has a given state xi , i.e. 0 or 1 for pore or solid respec-
tively, in a binary system. Strictly, to reconstruct a 3D porous medium we
need the full PDF p(x) for X, for which it is required to draw a per-
fect random sample from the sample space. However, this is impracticable,
because the 3D sample space is too large for a normalizing constant to be
calculated directly, so instead of deriving a PDF, we have adopted Markov
Random Field models by assuming that the state of any site depends on
the states of only a small number of neighbouring sites. To be more spe-
cific, for a particular site s, let �-s denote set of all sites other than s. Then
there exists a neighbourhood of s, N s , such that

p(xs |x(�-s))≈p(xs |x(Ns)) (1)

A MRF can be thought of as the multi-dimensional version of a Markov
Chain. In other words, MRF formulations adopt a conditional probabil-
ity perspective in a discrete stochastic process whose global properties are
controlled by local characteristics. In general, distributions such as (1) are
difficult to simulate, and existing iteration methods take a long time to
reach convergence, thus limiting the application in practice, particularly in
high-dimensional cases. However, for the 2D case, a new single-pass sim-
ulation has been developed to find the conditional probabilities (Qian and
Titerington, 1991a; Wu et al., 2004). In this paper, we consider the 3D case,
which is a direct analogue of the 2D approach. In 3D, instead of pixels, the
sites are voxels.

To build a 3D Markov Chain model for a lattice of voxels, we need the
following notations. Let VLMN = {(l,m,n) : 0 < l � L rows, 0 < m � M col-
umns, 0<n�N layers} be a finite integer lattice and let (i, j , k) be a voxel
at the intersection of row i, column j , and layer k, with associated state
Xijk. Vijk denotes the rectangular parallelepiped array of voxels depicted
in Figure 1 with associated state vector X(Vijk). Since a single-pass scan-
ning scheme will be used in our algorithm, instead of an intensive itera-
tion method, we have to define the “past” voxels of (a, b, c) which is
the set {(l,m,n) : l < a or m<b or n<c)}. The past voxels depend on the
chain direction. For example, if we run the chain from the bottom upwards
(along the z direction) layer after layer, then all the voxels in the lower lay-
ers, i.e. n<k, will be the past voxels. At the current layer, if the chain is run
from inside to outside (along the x direction) and from left to right (along
the y direction), the past voxels will be l <i and m<j . In general the chain
can be run in any direction.

The Markovian assumption for this third order model is that

p(xijk|{xlmn : l < i or m<j or n<k})=p(xijk|xi−1,j,k, xi,j−1,k, xi,j,k−1)(2)
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Figure 1. Definition of Vijk in the 3D Markov chain model.

Then, for any (i, j, k)∈VLMN , we have the joint probability function

p(x(Vijk))=
i∏

l=0

j∏

m=0

k∏

n=0

p(xlmn|xl−1,mn, xl,m−1,n, xlm,n−1) (3)

with lower order conditioning if any of the labels equals 0 (Qian and Tite-
rington, 1991b).

According to equation (1) a general MRF for a lattice would use the
conditional probabilities

p(xijk|{xlmn : (l,m,n) �= (i, j, k)})=p(xijk|{xlmn : (l,m,n)∈N (ijk)}) (4)

where N (ijk) is a neighbourhood of (i, j , k). For example, for the
19-neighbourhood with the nearest 18 neighbours would be

N19 (ijk)=

⎡

⎢⎢⎢⎢⎢⎢⎣

(i −1, j, k) (i, j −1, k) (i, j, k −1)

(i +1, j, k) (i, j +1, k) (i, j, k +1)

(i, j −1, k +1) (i −1, j, k +1) (i −1, j +1, k)

(i, j +1, k −1) (i +1, j, k −1) (i +1, j −1, k)

(i, j +1, k +1) (i +1, j, k +1) (i +1, j +1, k)

(i, j −1, k −1) (i −1, j, k −1) (i −1, j −1, k)

⎤

⎥⎥⎥⎥⎥⎥⎦
(5)

as shown in Figure 2a. Notice that this neighbourhood also includes
“future” voxels and the associated MRF would need an iterative method.
In contrast, to set up our MMRF we use a neighbourhood involving past
voxels only. To make the chain run more efficiently, we use an algorithm
generating two voxels simultaneously, voxel (i, j, k) and the right voxel
(i, j +1, k), similar to the 2D scanning algorithm introduced by Wu et al.,
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i,j,k

Third-order 19-neighbourhood system Third-order 15-neighbourhood system

i,j+1,k

Figure 2. 19-neighbourhood and 15-neighbourhood systems in 3D, corresponding to
equations (5) and (6) respectively.

(2004). Thus, we define a 15-neighbourhood, in which thirteen voxels are
past voxels and two voxels are to be decided, as shown in Figure 2b,

N15(ijk;i,j +1,k)=

⎡

⎢⎢⎢⎢⎣

(i−2,j,k−1) (i−2,j +1,k−1) (i−1,j,k−1)

(i−1,j +1,k−1) (i,j −1,k−1) (i,j,k−1)

(i,j +1,k−1) (i−2,j,k) (i−2,j +1,k)

(i−1,j −1,k) (i−1,j,k) (i−1,j +1,k)

(i,j −1,k)

⎤

⎥⎥⎥⎥⎦

(6)

which will be used in our new three-directional MCMC scanning algo-
rithm. The 15-neighbourhood is a direct extension of the 6-neighbourhood
in 2D (Wu et al., 2004). Details of the scanning algorithm using N15 follow
in Section 2.3.

Thus, for VLMN the rows, columns and layers of the MMRF form a sta-
tionary vector Markov chain of dimensions (M + 1)(N + 1), (N + 1)(L +
1) and (L + 1)(M + 1), respectively, while the total number of voxels is
Nv = (M + 1)(N + 1)(L+ 1). For a h-order model with Ns states and N (h)

neighbours, the computational complexity is O
(
Nv

∑h
i=1 NN (h)

s

)
(Qian and

Titerington, 1991b).
We can see that the computational intensity increases exponentially with

the number of neighbours considered. For a binary porous medium (the
situation addressed in this paper), Ns =2: pore and solid.

2.3. 3D scanning algorithm

For the proposed MMRF model (6), estimating the parameters in the joint
probability function (3) is very difficult. The problem is that the spatial
association intrinsic to MRF models leads to a situation where the applica-
tion of standard statistical approaches, such as maximum likelihood estima-
tion, are computationally prohibitive. In fact, in most applications where
standard maximum likelihood estimation is problematic, so too is the task
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of producing a random sample, let alone developing them in three-dimen-
sional contexts (Besag, 2000).

To overcome these difficulties, the standard approaches are replaced
by MCMC simulations. To accomplish this, we have to construct a 3D
Markov chain with state space X, which is straightforward to simulate and
whose equilibrium distribution is p(x). The chain is run for a sufficiently
long time – i.e. sufficient size in the present discrete spatial context – so
that the simulated structure of the chain reproduces the important statisti-
cal features of p(x) for the real material. In effect, we construct a so-called
ergodic Markov transition probability matrix. Wu et al. (2004) explored
this approach in 2D and here we extend it to 3D.

As stated before, if 3D images were available, the neighbourhood struc-
ture (6) could be used directly to construct the 3D chain. However, in
the absence of 3D information we describe below how to construct the
3D chain based on three perpendicular, independent, 2D images. For each
2D image a transition matrix is built using the 6-neighbourhood scheme
described by Wu et al. (2004). In this 2D scheme the conditional proba-
bilities for the sites (i, j) and (i, j +1) are determined simultaneously, using
a 5-neighbourhood N5(ij) for (i, j) and a 6-neighbourhood N6(i, j +1) for
(i, j +1), as shown in Figure 3. The chain in which this 2D scheme is used
to scan the 2D image, is also part of the chain for the 3D model (step
(ii)) described below. Wu et al. (2004) showed that in 2D this 6-neighbour-
hood was sufficiently large and they also found that the dual-site updating
scheme was more efficient (faster) and more effective (better quality) than
a mono-site updating scheme. To deal with the boundaries of the image,
additionally the conditional probabilities for 1D 2- and 3-neighbourhoods
and 2D 3- and 4-neighbourhoods are determined. For example, the 3- and
4-neighbourhoods are the reduced version of the 5- and 6-neighbourhoods
shown in Figure 3 if j = 1, which are used as indicated in Figure 4b.

Figure 3. 5- and 6-neighbourhoods (in grey shades) used in 2D.
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Figure 4. Illustration of combining 2D 5- and 6-neighbourhoods derived from
(a) three perpendicular planes in 3D into (b) 11- and 12- neighbourhoods for
updating the two voxels (i, j, k) and (i, j + 1, k) simultaneously, resulting into (c)
the combined 15-neighbourhood. For example, the 11-neighbourhood combines a 5-
neighbourhood in the XY plane (light grey), a 5-neighbourhood in the YZ plane
(middle grey) and a 6-neighbourhood in the XZ-plane (dark grey). Note that two
grey levels are marked for voxels from overlapping neighbourhoods, while (i, j, k) is
part of all three neighbourhoods.

As in 2D, the 3D 15-neighbourhood shown in Figure 2b is built in 2
steps. First, a 11-neighbourhood N11(ijk) is constructed to determine the
conditional probability for voxel (i, j, k) by combining the 2D 6-neighbour-
hood Nj,6(ijk) and the 5-neighbourhoods Ni,5(ijk) and Nk,5(ijk) shown in
Figure 4b. To clarify the notation, for example Nj,6(ijk) denotes the 2D
6-neighbourhood of (i, j, k) in the plane with constant j , with associated
conditional probability p(xijk|x(Nj,6(ijk))). Then, to determine the proba-
bility for (i, j + 1, k) the 6-neighbourhoods Ni,6(i, j + 1, k), Nj,6(i, j + 1, k)

and Nk,6(i, j +1, k) are combined to form the 12-neighbourhood N12(i, j +
1, k) shown in Figure 4b. Notice, that the newly determined probability
for voxel (i, j, k) is part of Ni,6(i, j + 1, k) and Nk,6(i, j + 1, k). Together,
N11(ijk) and N12(i, j +1, k) form the 15-neighbourhood N15(ijk; i, j +1, k)

(6) shown in Figure 4c. Hence, this 15-neighbourhood is a direct general-
isation of the previously developed 2D 6-neighbourhood.

The associated 3D transition probabilities p(xijk|x(N11(ijk))) and
p(xi,j+1,k|x(N12(i, j +1, k))) are calculated as

p(xijk|x(N11(ijk)))= �
{
p(xijk|x(Ni,5(ijk)))+p(xijk|x(Nj,6(ijk)))+
+p(xijk|x(Nk,5(ijk)))

}
(7)

p(xi,j+1,k|x(N12(i, j +1, k)))= �
{
p(xi,j+1,k|x(Ni,6(i, j +1, k)))+
+p(xi,j+1,k|x(Nj,6(i, j +1, k)))+
+p(xi,j+1,k|x(Nk,5(i, j +1, k)))

}
(8)

The averaging parameter α is determined based on matching the measured
and the calculated porosities, as explained below.
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To deal with different boundaries reduced 7-, 8-, 10- and 11-neighbour-
hoods are used instead of the 11- and 12-neighbourhoods. For example,
11- and 12-neighbourhoods in Figure 4b reduce to 7- and 8-neighbourhoods
if i =2, j =1 as used in Figure 5c, based on 5- rather than 6-neighbourhoods
in the planes with constant j. Expressions similar to (7) and (8) are used to
calculate the transition probabilities for the reduced neighbourhoods.

Using the above neighbourhood scheme, the Markov chain is simulated
as follows:

(i) At the beginning of the chain, the probability that the first voxel is
pore is taken as the value of the porosity. Then, the first row is con-
structed in a 1D simulation (Figure 5a). using a 3-neighbourhood, for
which the conditional probabilities are derived from the horizontal thin
section (constant k).

Figure 5. 3D chain construction illustration chart.
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(ii) The second row is started with a 4-neighbourhood, also derived from
the horizontal section (Figure 5b). Then, in one scan, we create row by
row the first layer in a 2D simulation described by Wu et al. (2004),
using the 6-neighbourhood with probabilities derived from the horizon-
tal thin section.

(iii) The first row of the second layer is formed similar to the second
row of the first layer (see step ii above), but now using a vertical
4-neighbourhood (constant i), followed by 6-neighbourhoods in the same
plane. The second row of the second layer starts with reduced 7- and
8-neighbourhoods (Figure 5c) and continues with the reduced 10- and
11-neighbourhoods described above. Then, the inside rows and columns
are built using the full 3D 15-neighbourhood described above.

To build the chain 2- and 3-neighbourhoods in 1D are determined,
yielding 22 and 23 transition possibilities in the binary systems. Similarly, 3-
and 4-neighbourhoods in two 2D sections are determined, accounting for
2 × 23 and 2 × 24 possibilities, while 5- and 6-neighbourhoods in all three
2D sections add up to 3×25 and 3×26 possibilities. Hence, a total of 348
conditional probabilities need to be determined.

For the present binary system, to determine the averaging parameter �

in equations (7) and (8) it is sufficient to consider the probabilities for xijk

and xi,j+1,k equal to 0 (pore) only. Obviously, � = 1/3 reflects pure arith-
metic averaging, but we choose to optimise this parameter by matching
the porosity (fraction of pore voxels). After a single scan with � = 1/3,
we normally find that the porosity �c calculated from the reconstruction
is up to 10% lower than the measured porosity �. Then, adjusting � by
d� = 0.1

(
�c −�

)
the scans are repeated until the difference between the

measured and calculated porosities is less than 0.1%. This usually happens
within 4 scans and a typical final � value is 0.339.

2.4. reconstructions of porous rocks

We have applied the 3D modelling approach to a wide range of rocks and
soils, encompassing perhaps 100–150 different materials to date. Here we
describe a few results for a variety of rocks, ranging from coarse sandstone
to a very fine mudrock, for which the data are summarised in Table I,
to illustrate the capability of the new modelling approach. The measured
permeability of these materials ranges over more than six orders of mag-
nitude. In some cases, only a single thin section was available, in which
case we assumed that the image characteristics of this single section applied
in all directions. Then, our 3D Markov random field models were used
to reconstruct the rock structures in 3D. Because we are interested in the
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Table I. Characteristics of reconstructions and simulated permeabilities

Sample Type Image size (mm2) Porosity Measured Simulated
and pixel size (%) permeability permeability
(µm) (mD) (mD)

1 Deformed rock 1.30×0.92 (1.0) 17.87 82.1 71.5
2 Deformed rock 1.30×0.92 (1.0) 28.02 1406 1078
3 Deformed rock 1.30×0.92 (1.0) 13.15 2.31 0.5
4 Deformed rock 1.50×1.00 (2.0) 14.33 NA 0.48
5 Deformed rock 1.50×1.00 (2.0) 8.54 NA 2.2
6 Undeformed 3.0×1.9 (4.0) 27.17 2500 2236

sandstone
7 Mudrock 0.490×0.365 (0.6) 22.64 0.32 0.38
8 Mudrock 0.490×0.365 (0.6) 11.73 0.013 0.024
9 Sandstone 9.0×6.0 (12) 31.64 NA 2410 (top

with deformed layer) 12
bands (sheer band)

10 Soil 10×10 (33) 15.5∗ NA NA

∗Average of the 3 thin section porosities, as the total porosity was not available.

pore system, we have termed these reconstructions pore architecture models
(PAMs).

To obtain the model parameters (transition probabilities), thin sections
were digitally imaged and the results were stored as binary arrays depicting
grains + cements (solids) and pore spaces. The images covered sample areas
ranging in scale from millimetres to centimetres. Typically, the images com-
prise binary maps containing 550 × 550 pixels (e.g. a 1.65 × 1.65 cm image
area has a resolution of 1 pixel=30µm, while an image 0.05 cm across has
a resolution of 1 pixel=0.1µm).

The numerical implementation allows the user to specify the number of
voxels to be generated. Tests show that the number of voxels for which the
simulated 3D architecture becomes stationary (stable ratio of pores to sol-
ids) depends on the degree of heterogeneity. For example, reconstruction of
a homogenous material, such as a typical sandstone, requires at least 1003

voxels, corresponding to a cube with side 0.3 cm for an image with 30 µm
pixels. In contrast, an inhomogeneous sample may require 2003 voxels and
even larger sizes are needed for highly heterogeneous deformed rocks. The
PAM method is very fast, as it takes only a few minutes to reconstruct a
cube on a common Pentium IV PC. Obviously, the image analysis and data
preparation take longer.

In Figure 6 the reconstructions for the samples of Table I are pre-
sented. For each of these samples only one thin section was available and
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we assumed that the sections were statistically the same in the remain-
ing perpendicular directions, except for sample 9. Visually, the agreement
between the sections and the PAMs is good. However, more detailed com-
parisons between the images and the reconstructions will be carried out in
the Sections 2.5 and 3. In Figure 7 a reconstruction is shown of a fairly
heterogeneous soil (sample 10 in Table I), for which three perpendicular
thin sections of a single core were available. Comparison of the sections

Figure 6. Simulations of various rocks with the corresponding thin sections, for
samples 1 to 9 as detailed in Table I (black indicates pore space).

Figure 7. Simulation of a heterogeneous soil material based on three perpendicular
thin sections (sample 10 in Table I).
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and the PAM shows, for example, that the morphology and size of the void
spaces have been qualitatively reproduced.

2.5. calculation of intrinsic permeability

One of the least complicated macroscopic transport properties is the sin-
gle-phase (intrinsic) permeability, which is estimated from a PAM using the
Lattice–Boltzmann (LB) method. The advantage of LB is that non-equilib-
rium dynamics, especially those involving interfacial dynamics and complex
boundaries (geometries), can be incorporated relatively easily (Kadanoff,
1986). In this paper we use the single-time relaxation scheme (Bhatnagar
et al., 1954), the so-called BGK model, with details as proposed by Qian
et al. (1992) and Chen et al. (1991), in which the flow of a single-phase
fluid is represented by a distribution of particles moving in a limited num-
ber of directions.

We use the 19-velocity model in 3D, i.e. D3Q19 where the particles
move in 19 directions in the reconstructed 3D porous rock, which defines a
three-dimensional grid of voxels, each of which maintains a nineteen parti-
cle distribution functions.

The pore-solid interface is assumed to be a non-slip boundary for water
movement, where the water velocity is zero. One shortage of the BGK
model is that the actual locations of the non-slip boundaries LB recovers
varies with the relaxation time and, as a result, the simulated permeability
is unrealistically a function of fluid viscosity (Li et al., 2005). The multiple-
relaxation scheme developed by Lallemand and Luo (2000) can overcome
this problem but at the expense computational cost. As the aim of this
work is to calculate the permeability of a single-phase flow, we simply use
a relaxation time whose value is one to accurately locate the boundary.
We define the 19 particle distribution functions at the centre of the each
pore voxel so that the particle hits the water-solid boundary halfway in its
one-time-step journey. All particles that hit the water-solid boundary half-
way during their one-time-step journey are bounced back where they come
from. Such treatment of the water-solid boundary is a special case of the
scheme proposed by Filippova and Hanel (1998) for non-slip boundary and
is second-order accurate. There are different ways to apply a driving force
to fluid (Buick et al., 2000), and in this work we used a pressure gradient in
our simulations. The prescribed pressures are maintained the method pro-
posed by Zou and He (1997). Details of treating the boundary and the cal-
culation of the permeability from the LB simulation are given in Zhang et
al. (2005).

Permeabilities of the reconstructions have been calculated using (typi-
cally) 2003 voxels, which are equivalent to volumes of a few cubic milli-
meters to one cubic centimeter in the presented examples. The calculated
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permeability values are compared with measured values in Table I, show-
ing good agreement. This is a first indication that the PAM reconstruction
approach is able to capture the characteristics of the pore system of the
examined rocks.

3. Spatial Distribution of Pores and Pore System Topology

The success of PAMs in reproducing the measured permeabilities justifies
further investigation of the reconstructed pore system. In this section we
describe additional analyses that reveal details about the sizes of the pores
and how they are connected, i.e. the geometrical and topological charac-
teristics of the reconstructed medium. Unlike porosity, these characteristics
of a porous medium control the transport properties. Currently, there is no
universal standard to quantify these characteristics. Therefore, we introduce
a new suite of methods called pore analysis tools (PATs), which are based
on image analysis methods.

Within PATs, we identify each void space of the model using the PAMs
as input. Using an iterative procedure, we fit into each void space a “struc-
turing element” that consists of a pseudo-spherical aggregation of voxels,
similar to Vogel and Roth (2001) and Silin et al. (2003). In this work we
only use the “spherical” shape, although other shapes can be used too.
Starting with the largest pore bodies, we fit the “equivalent” sphere into
them. Then a smaller structuring element is fitted into the next smaller
pores, etc, until the pore system is completely filled. We define the corre-
sponding sphere diameter as the pore size.

The pore size distributions for three PAM realizations of one sample,
sample 6 in Table I, are shown in Figure 8. The figure also shows the pores
in the sample that are larger than 0.02 mm. The minimum pore size that
can be determined is limited by the voxel size. To visualise the pore size
distribution in the pore system, the pores have been depicted with different
colours according to their sizes. For this example, the pore space is divided
into 11 pore size classes ranging from 0.02 to 0.3 mm in diameter and the
corresponding volume fraction of the pore space, i.e. the porosity, has been
determined. The classes are determined by the sizes of the structuring ele-
ments. Using the pore size PAT, we illustrate the variation of pore size dis-
tributions from multiple PAM realisations in Figure 8. The close agreement
of these curves demonstrates the stability of the PAM method.

Although there are no direct means of measuring pore size in the lab-
oratory, the mercury injection porosimetry (MIP) method can be used to
infer this characteristic (Matthews et al., 1995). MIP is also helpful in
investigating pore connectivity. MIP is based on capillary dominated liquid
penetration into progressively smaller pores. Assuming cylindrical pores,
the relationship between the applied mercury pressure P (psi), and the
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Figure 8. (a). Visualisation of pore size distribution and (b). corresponding curve for
three realisations from sample 6 in Table I.

diameter D (m) of the corresponding pore being invaded, is expressed by
the Young-Laplace equation

D = −4� cos �

P
(9)

The surface tension γ (dynes/cm2) of mercury varies with purity, but the
usually accepted value is 484 dynes/cm. The contact angle θ between the
mercury and the solid, measured through the mercury, varies somewhat
with solid composition, but is normally close to 130◦.

In a mercury injection experiment the volume of the intruded mercury
increases rapidly around a certain pressure, which depends on the pore
size distribution. This is the percolation threshold pressure, which corre-
sponds to an inflection point on the mercury injection curve, i.e. the graph
of mercury pressure versus saturation. At this threshold pressure, the mer-
cury forms an interconnected pathway throughout the sample (Katz and
Thompson, 1986).

Since we know the pore size spatial distribution and how the pores
are connected, it is straightforward to simulate a mercury injection pro-
cess. Instead of replicating the usual (omni-directional) laboratory injection
procedure, we simulate single-directional mercury injection through one of
the six faces of the simulated cube. Figure 9 shows the simulated mercury
injection curve for the reconstructed sandstone cube of sample 6, compared
to the experimental curve. The two curves agree very well, suggesting that
the PAM also reproduces critical details related to the connectivity of the
pore system.

The pore connectivity is recognised as a key control on the flow proper-
ties of a medium. A topological parameter, to quantify the connectivity, is
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Figure 9. Simulated mercury injection curve (line with triangles) compared with
experimental data (dotted line with circles) for sample 6.

the specific Euler number �V , which is defined by (Vogel, 1997; Vogel and
Roth, 2001)

�V = N −C +H

V
(10)

Equation (10) applies to a specific volume V of porous medium, with N
isolated objects, C interconnected regions or loops (often referred to as the
connectivity or genus), and H completely enclosed cavities (solid floating in
void). Broadly speaking, a negative �V corresponds to high pore connectiv-
ity. Following Vogel (1997) we define a connectivity function, in which �V

is calculated based on pore sizes ranging from a specified value up to the
maximum pore size. This connectivity function is presented in Figure 10 for
the realization of sample 6. Obviously for the small pore sizes, the connectiv-
ity is high as the pore size range on which �V is based, comprises almost all
pores. However, there is a rapid increase in the specific Euler number between
pore sizes 50 and 60 µm, indicating that the set of pores with sizes larger than
these values are not interconnected. According to the MIP data for this sam-
ple (Figure 9), the percolation threshold pressure lies between 5.47 and 7.74
psi, which correspond, based on equation (9), to pore sizes of 45 and 50 µm,
respectively. Thus the connectivity curve confirms the interpretation drawn
from the mercury injection curve. This implies that the specific Euler number
is a very useful topological parameter.

4. Discussion

The methods described in this paper represent a significant contribution
to the tools that are available to understand the characteristics of porous
rocks or soils. The PAM method provides reconstructions, which only
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Figure 10. Connectivity function curve for sample 6, showing the specific Euler
number, calculated for pore diameters ranging from the indicated size up to the
maximum size.

require thin section images (or other image types, such as SEM scans) as
input and is therefore essentially non-destructive. The PAMs can then serve
as input to a variety of simulation and analysis tools (PATs). We have
described some of those tools, which enable calculation of key flow prop-
erties of the porous material. The good correspondence between the calcu-
lated and measured flow properties – which does not require “tuning” or
calibration – serves as an initial validation of the PAM method itself.

It may be clear that prediction of the flow characteristics requires more
than determining the porosity and the pore size distribution. The pore
connectivity, i.e. the topology of the pore system, must also be obtained
to make robust predictions. Previous efforts to develop a representation
of pore system topology have been based on extrapolation of 2D pat-
terns inferred from thin section analysis (Okabe and Blunt, 2004) or have
been directly determined from analysis of computerised tomography images
(Lindquist et al., 2000; Arns et al., 2004). Based on additional work that
we will publish separately, we believe that tomography techniques fail to
capture important pore system connections that occur at the smaller pore
sizes. We do not yet have a direct comparison to enable us to draw a firm
conclusion, but we suspect that a thin section scheme only will create a
good representation of the complex topology associated with the smaller
pores.

In contrast, PAMs seem to capture at least part of the topology of real
pore networks and with their geometric characteristrics (e.g. pore size dis-
tribution and spatial pattern of pores). This inference is based on the corre-
spondence between mercury injection characteristics, and the shape of the
connectivity function involving the specific Euler number, particularly the
indication about the percolation threshold pore size. We are tempted to
speculate that topological measures (which are amongst the characteristics



3D STOCHASTIC MODELLING OF HETEROGENEOUS POROUS MEDIA 463

that can be determined using PATs) may enable us to make better predic-
tions about the flow characteristics than we can obtain by laboratory meth-
ods – especially if we are interested in multi-phase flow properties.

5. Conclusions

The developments reported in this paper provide additional techniques, i.e.
pore architecture models (PAM) and pore analysis tools (PAT), for inves-
tigating the characteristics of porous media. Additional work is required
to determine if PAMs and PATs represent a significant advance over other
methods. At this stage of the research, we can draw the following specific
conclusions:

1. The PAM approach is an effective method to reconstruct (possibly
heterogeneous) porous media. It seems applicable to a range of rock
types, such as clean sandstones, deformed rocks, mudrocks and soils. An
appealing aspect of this method is that it is fast and can be applied
using information derived from thin sections or other readily obtained
images.

2. Calculated single-phase (intrinsic) permeabilities of the reconstructed
media, using the Lattice–Boltzmann method, closely match the corre-
sponding laboratory values for a range of materials.

3. Both pore geometry (size) and topology (connectivity) are important for
predicting the flow properties of a porous medium. Using a sphere-fit-
ting method, we have determined the pore size distribution from a PAM.
For the pore system derived from the PAM, we have simulated the mer-
cury injection curve, which closely agrees with the experimental data.

4. A topological measure, the specific Euler number, indicates the size
range of the set of interconnected pores. The smallest size in this range
is the same as that inferred from mercury-injection data and corresponds
to the percolation threshold. This indicates that topological characteris-
tics are useful for predicting flow properties.
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