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Global warming beyond 1.5-2°C
multiplies the rainforests' tipping risk

Chandrakant Singh, Ruud van der Ent, Ingo Fetzer & Lan Wang-Erlandsson
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Damage Could Trigger "Dieback": Study
AmaZOH RainforeSt Tipping POint iS Closer In recent years, widespread deforestation and burning of agriculture has taken its toll on the Amazon

Than Ever, Data Shows rainforest

"""" Gulatdian

Amazon near tipping point of switching
from rainforest to savannah - study

Climate crisis and logging is leading to shift from canopy rainforest
nature to open grassland SCIENTIFIC
AMERICAN.

NEWS FEATURE | 25 February 2020 CLIMATE CHANGE

When will the Amazon hit a tipping Amazon Rain Forest Nears
point? Dangerous “Tipping Point’

Scientists say climate change, deforestation and fires could cause the world's largest . . o : o1
y 8 g It is losing its ability to recover from disturbances such as drought, wildfire and human

rainforest to dry out. The big question is how soon that might happen. development, researchers say
. ? o
Ignacio Amigo
By Chelsea Harvey, E&E News on March 8, 2022

Background




‘Tipping’ refers to the significant reorganization of a system’s structure and functions

Rainforest tipping refers to changes in the dense-canopy structure of forests to
one that mimics an open-canopy structure similar to savanna
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Background Method Results and discussion



Complex ecohydrological dynamics remain challenging to incorporate in the Earth
System Models (ESMs) due to our limited understanding of Earth System processes

This limits ESM's capacity to simulate tipping points as an emergent property of the system
(Le., properties that emerge due to multiple interactions between several system components, and
(s not the property of an individual component)

We have depended on empirical evidence to simulate rainforest tipping
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the magnitude and duration of water-deficit
experienced by the vegetation also affect them
at the local scale is not accounted by mean
annual precipitation

from Staal et al. 2020 (Nat. Comm.)

Research question/gap




Root zone storage capacity (S,)
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S, represents the maximum volume of water
per unit area within reach of plant roots for
transpiration (this (s water that ecosystem store
from periods when water is surplus in its
unsaturated zone of the soil, which we refer to
root zone)

Assumption: Ecosystem do not invest more
than necessary to bridge the water-deficit
experienced by the vegetation

adapted from Wang-Erlandsson et al. 2016 (HESS)
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Rootzone storage capacity reveals drought coping strategies along
rainforest-savanna transitions
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Hydroclimatic adaptation critical to the resilience of tropical
forests
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a-c is defined for one ESM

a b C
Classifying terrestrial ecosystems Classifying terrestrial ecosystems Analysing potential transitions based
under current climate under future climate —> on current and future classifications
as lowly, moderately and as lowly, moderately, highly
highly water-stressed forests water-stressed forests and
savanna

el c.g., present day
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South America Africa
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For Amazon, these risks increase 1.5-6 times relative
to its immediate lower warming scenario, whereas,
for Congo, the risk growth is 0.7-1.65 times
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Take home message:

Forest-to-savanna transition risks
increase non-linearly with each degree
of warming

Although some transitions are locked-in,
vast majority of potential transition
can still be influenced by steering
across different climate change
scenarios.

Restricting temperature change below
1.5-2°C warming, we minimize tipping
risk and maximize ecosystem recovery
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