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As a result, there is great spatial
variability in the overall distribution of
global fire activity.
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FROM: Chuvieco, E., Giglio, L., Justice, C., 2008. Global characterization of fire
activity: toward defining fire regimes from Earth observation data. Global Change
Biology 14, 1488-1502.




We propose two approaches based on complex networks for
studying this phenomenon and the possible teleconnections

Correlation networks (CNs) Bayesian networks (BNs)
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‘ . N Climate Change
(opemicus (8 gmascrn

Fire burned area from 2001 to present derived from satellite

observations. s
Native resolution e - e
o Spatial: 0.25° K .

o Temporal: monthly %EEE

Data used: s

o Burned area (BA) » Target variable

o Fraction of burnable area (BAF) ——— jsed for
masking/filtering




Mean burned area (log10) 2001-2019

CLIMATE
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Annual Burned Area time series 2001-2019

3e+05 —

—e— Total Burned Area (ha)
—o— BAanomalies |

37.5°E/ 25°N

Total dataset size:
19 years x 645 grid cells
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. Correlation networks (;}%o igraph

Construction Weighted adjacency matrix

- 0 Sl Pij S Te
(4i5)" = |

cov(R(X), R(Y))

IR(X)IR(Y)

Pg =

Unweighted adjacency matrix

(A)u B { 0 si Pij = Te
| =

1 si py > Te




. Correlation networks (;\,%o igraph

Construction Weighted adjacency matrix
- 0 s1 Pij § Te
Y@ s
cov(R(X), R(Y))
Ps =
OR(X)OR(Y)
Unweighted adjacency matrix
0 8 <7
Selection of threshold T_is (Aij)u — = e
critical to determine network 1 si 057 > T

properties




Correlation networks

Global connectivity measures

Global clustering coefficient

Measures the proportion of “clustered” nodes

>, AiAirAik

gk
= > ki(k; — 1)




Correlation networks

Global connectivity measures

Diameter

Longitude of the longest graph “geodesic*”
D = max ({gZ] }z = 1)

*The geodesic 9; is the shortest path
between two nodes (ij) of the network




Correlation networks

Centrality measures

Degree

Number of links connecting node / with
the rest of the network

k; = f:Az-j
J




Correlation networks

Centrality measures

Betweenness

Proportion of geodesics* passing through node i

m

BZ-:Z%

okt I

*The geodesic g.. is the shortest path
ij .
between two nodes (i) of the network




Correlation networks

Centrality measures

e Strength issimilar to ‘degree’, but summing the weights of all links connecting
node i with the rest of the network
e \Weights can be based on correlation or (geographical) distance:

Correlation-based strength Distance-based strength
m m m

(Si)° = Z (Aij)" = Z (we),; (Si)d = Z (wa);;

i J J




Correlation networks

Centrality measures

Area weighted connectivity

Fraction of the earth's surface to which the
node is connected

. » o
Prime Meridian




Correlation networks

Centrality measures

Ratio between the distance-based
strength of node j and its degree

Mean geographical link distance

L.
(Sz)d 1 i
MD; = — k. Ej :(wd)ij

k;




Correlation networks

Communities

e Communities are clusters of nodes that are
highly connected to each other compared
to the rest of the network

e Community Detection Algorithm
(clustering) based on betweenness
between links (“greedy search”)
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Correlation networks

Communities

Community Detection Algorithm (clustering)
based on betweenness between links
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Correlation networks

Communities

Community Detection Algorithm (clustering)
based on betweenness between links
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Correlation networks

Communities

Community Detection Algorithm (clustering)
based on betweenness between links

m [ X
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B, = Z =it
skt 7




Correlation networks

Communities

Community Detection Algorithm (clustering)
based on betweenness between links
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Optimal Correlation threshold choice T

L]
—e— RN Clustering Coefficient
—e— CN Diameter

—e— RN Diameter

T

o —
— °
° —_——e—

206969 175723 145102 117292 91590 69519 51059 35323 23690 15597 9804 5715 3209 1719 842 387 155 52 1

{7 1 FIH [ A 0 R OO PR L)

T

o

{ T T T T T T T T T T T T T T T T T T T
0.00 0.05 0.10 0.15 020 025 030 035 040 045 050 055 060 065 0.70 075 080 085 090 0095

Correlation threshold

32
30
28
26
24
22
20
18
16
14
12
10

N A

Diameter

Correlation networks

Different thresholds are
intercompared against a
“random” network considering
Diameter and Clustering
coefficient




Clustering coefficient

Optimal Correlation threshold choice T
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Correlation networks

Different thresholds are
intercompared against a
“random” network considering
Diameter and Clustering
coefficient

Tau=0.6 provides best overall
results: i) “stable” clustering
and ii) mean connectivity
between nodes, thus allowing
for a better pattern search




Bayesian networks

Bayesian network
A probabilistic graphical model that represents a set of

variables (that is, each BA pixel) and their conditional bnlearn package
dependencies via a directed acyclic graph (DAG) bnlearn.org

N
ojo

Joint Probability Factorization (each letter is a burned area cell):

P(A,B,C.D,E) = P(A)P(B|A,E)P(C|B)P(D|A)P(E)

O,

The joint probability density function can be written as a
product of the individual density functions, conditional on
their parent variables

d
P(©16,D) = [[ P(e: |11, D)
=]
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Log-likelihood
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1

Bayesian networks

Structure (DAQ) learning: hill climbing algorithm (automatic)

Parameter learning: Gaussian Bayesian network, considering the gaussian
response of log10 BA anomalies

Optimization: log-likelihood estimation for different network sizes (links)

The results are not optimal -> low
* number of samples (~20 years)

Optimal network search by comparing
t log-likelihood scores (considering also
PSRN = e the computational cost)

t m
= Y log[]Pi(xXi =df |Tx, = dfy,.)
k=1 i=1

= D hwni =t =) A compromise solution is a
|

T T T T T T

A network with 2000 links.

Number of links
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Correlation networks

=06

Spatial Network for T,

Spatial Network

-

Correlation sign




Correlation networks

Spatial Network

Positive Spatial Network for T, = 0.6

Correlation coefficient _

07 0.8 09




Correlation networks

Spatial Network

Negative Spatial Network for T.=0.6

Correlation coefficient “l

-0.850.8€0.750.7€0.65




Correlation networks

Optimal Correlation threshold choice T S
C e Mean link distance by

sign indicates the

10000 . prevalence of strong
I T S / . positive local
B T TR, correlations and more
.\. ° .
, S N stable stable negative
5 ™ S long-distance
. \.\, relationships.
§ ) —e— All links \‘\-
—e— Positively correlated links \ = °
—e— Negatively correlated links|
2000 \ /
:\,
0 —{ 206969 175723 145102 117292 91590 69519 51059 35323 23690 15597 9804 5715 3209 1719 842 387 155 52 15 2

T T T T T T T T T T T T T T T T T T T T
000 005 010 015 020 025 030 035 040 045 050 055 060 065 070 075 080 085 090 095

Correlation threshold




Centrality measures

Correlation networks

Betweenness
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Correlation networks

Centrality measures

Distance-based strength Mean link distance per node




Centrality measures

Correlation-based strength

Correlation networks

Area Weighted Connectivity
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Correlation networks




Correlation networks

Community detection:1_= 0.6
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Correlation networks

.1 Community detection:1_= 0.6
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Mediterranean emerges soon as a distinct community
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2  Community detection:1_= 0.6

Northern Europe and Indonesia form a robust community
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Community detection:1_= 0.6

At lower cutoff thresholds Australia Western USA and South
America belong to the same cluster
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Bayesian networks

Bayesian inference Evidence in high-degree pixel
over Africa
! =53 0.8 This result does
e 0.7 not provide any
' significant
0.6 teleconnection
~ - pattern beyond
' local influence
0.4
0.3
0.2




Bayesian networks

Bayesian inference Evidence in pixel over Indonesia

0.8 e Thisresultis
consistent with

0.7 correlation

0.6 network -
community

0.5 detection

04 @ ltunveilsa
positive link
ro3 between
Indonesia and
Northern Europe




Bayesian networks

Evidence in pixel in Amazon Basin

Bayesian inference (green box)

08 e Thisresultis
consistent with
O correlation
06 network
community
0.5 detection
ox ® It unveils a
positive link
0.3 between South
_ Y 83 America, NE
P T =2 —PXK: 2> 1) ' Siberia and SE
0.1 Asia
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The fire database contains an underlying spatial structure.
Both approaches, although different in construction, provide consistent
results. The robustness of the synchronicities found is confirmed.
Bayesian networks seem a preferable option, being able to eliminate
redundancies inherent to correlation networks and to encode conditional
dependencies.
Synchronicity in annual fire activity is observed between distant areas, such as
equatorial Africa and South America, Indonesia and Northern Europe, or the
Amazon Basin and the Philippines.
Complex networks offer a suitable approach for investigating wildfire
synchronicities, and have the potential for investigating lagged
teleconnections too
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1.

On-going work...

Replace Burned Area by historical Fire danger records (e.g. mean
fire season FWI) allowing for a larger sample size -> More robust
networks expected

Underlying mechanisms for teleconnections found are being
currently investigated -> climate teleconnection patterns



Code for reproducibility can be found at:

https://github.com/CatharinaG/Complex_wildfire

GitHub
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