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WHAT

Area is geothermically
exploited

2009: unexpected drilling into
magma at 2.1 km depth

Why was that magma pocket not detected with imaging techniques?

What do we have to do in order to see it?
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 Imaging at volcanos is challenging VY N

--> Frequency

* But important for natural hazard assessment and geothermal exploration

* Conventional imaging methods reach their limitations

How do we have to process seismic data in order to get a high-
resolution image of the sub-surface in complex media?

From Castruccio et al. (2017, JGR)
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Reflections of seismic waves
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Iy T T Krafla

Volcanic caldera in the north-east of Iceland.
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* One of the best-investigated volcanos worldwide.

* Einarsson (1978, Bull Volcanol) suggested the existence of a magma body at 3 km
depth beneath the caldera (grey shaded areas in map).
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In 2009, rhyolytic magma was unexpectedly encountered at the IDDP1 borehole at
a shallow depth of 2.1 km during geothermal drilling.

- This magma pocket remained undetected before the drilling, despite numerous
geophysical investigations.
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A: Iceland rift system (shaded) and location of Krafla (black square).

B: The Krafla volcanic caldera, outlined by the thick black line. The shaded areas
mark the magma body inferred by Einarsson (1978, Bull Volcanol). The star marks
the location of the IDDP1-borehole. The orange square delineates our study area. Steam coming out of the IDDP1 borehole
Figure modified from Elders (2011, Geology).
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GOAL: Image the magma pocket beneath the IDDP borehole using reflections of seismic waves.

Station setup
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Our research is at a local scale, but the question is really more a general one:

How do we have to process seismic data in order to get a high-resolution
image of the sub-surface in complex media?

Krafla is ideal to test and calibrate seismic imaging, because the location of the magma
body is known through drilling.

neath IDDP1

km b.s.l.)

Krafla field campaign (summer 2022, 40 days)
* Deployment of > 100 continuously recording geophones (5 Hz)

1.long line L2: ~ 2km long, station spacing 30 m
2. short line L1: ~ 1km long, station spacing 30 m
3. circular array ARR: aperture 140 m

Seismic sources

* > 300 micro-earthquakes

- Depths 0.67 km - 3.31 km b.s.l.., local magnitudes -0.5-1.5
- 18% of hypocentres above target depth (2.1 km beneath IDDP1 borehole)

* High-frequency (>2 Hz) industrial noise generated by the power plant
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* Recorded wavefield looks “messy” and
lacks coherency across the stations.

* For example, stations ARRO5 and ARR06
are only 50 meters apart from each other
but record very different waveforms. Also
their frequency content differs a lot.

* Subsurface extremely heterogeneous
- Coherent arrivals are hidden, masked
by multiply scattered waves.
- Recorded waveforms are dominated by
near-station effects.

Landscape at Krafla. Lava caves and rocks of
different sizes characterize the area.
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Why is seismic imaging at volcancs challenging?
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Edifice > 2,000 m

Raytracing

From Castruccio et al. (2017, JGR)

We use a velocity model that only varies in 1D, provided by ISOR
(but our model space is 3D!).

We predict traveltimes for the direct P and S waves.

We also model primary reflections and ghost reflections assuming flat reflectors at depths:

- 3 km (for the magma chamber suggested by Einarsson (1978, Bull Volcanol))

- 2.1 km (depth at which the magma beneath the IDDP1 borehole was encountered)

Why reflections?
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* Smaller objects are smeared out by tomographic techniques.

1D velocity models

P wave
S wave

3 4 5
Velocity [km/s]

Depth b.s.l. [km]
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* Volcanic magmatic system consists of multiple magma pockets/bodies that are connected.

Traced rays, reflector depth = 3 km

* Larger objects, such as a large deep magma reservoir can potentially be detected with seismic tomography.

» Seismic reflections depend on the impedance contrast between the layer above and below the reflector.

* Provided that a suitable source-receiver combination is available and the impedance contrast is strong enough, the
reflected wave should be contained in the recorded wavefield, even though strong scattering masks it.
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Recorded earthquake (local magnitude=1.09)

EXAMPLE 1
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-0.21)

Recorded earthquake (local magnitude

EXAMPLE 2

1.5

1.0

Stations of the long line L2
0.5

0.0

Distance to IDDP [km]
-0.4 -0.2 0.0 0.2 -0.5

Stations of the short line L1

Distance to IDDP [km]
-0.6

For earthquakes with depths < 1.48 km b.s.l. (2.1 km below

IDDP1), we model direct and reflected waves.
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EXAMPLE 3 Recorded earthquake (local magnitude=-0.14)

Another example for modelled waves (reflector at 2.1 km Stations of the short line L1 Stations of the long line L2
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Coverage of P1 reflection points at Krafla
Depth reflector = 2.1 km

CDP (common-depth-point) binning and stacking
»  seismic stations
5.5 » earthquakes
*  Method commonly known from applied seismics.
* Aims at increasing the SNR of reflections by sorting traces according to their reflection points at depth. Ed °
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Coverage of P1 reflection points at Krafla CDP (common-depth-point) binning and StaCking
Depth reflector = 2.1 km
seismic stations . . . .
55 . earthquakes * Coherent arrivals between direct P and direct S waves visible.
* Problem: hypocentres are right above the reflector.
5:0 We select the bin close to the IDDP1 --> Difference in traveltime between the direct P wave and the
borehole and plot the corresponding primary too small, we can't isolate the reflection.
45 CDP gather.
CDP gather (freqRange 6-15 Hz)
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Summary

A

Seismic Imaging of heterogeneous media is challenging because of the complexity of the wavefield.
Edifice > 2,000 m . . .
* Small magma bodies are smeared out by tomographic techniques.

* Strong scattering due to geologic heterogeneities mask coherent reflections.

* Degree of scattering is higher in the uppermost crust — makes it even more difficult to image shallow objects.

Using a simple 1D velocity model, we predict traveltimes for direct and reflected waves.

¢ Traveltimes of direct waves match well with real data.

* This means that the velocity model is reliable - very useful for future analyses.

Coherency-based methods will be used for wavefield separation.
* Methods from applied seismics (e.g., CDP binning) will be used in combination with interferometry

(e.g., redatuming of sources through cross-correlation).

From Castruccio et al. (2017, JGR)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

