Forced subduction initiation near spreading centers: effects of brittle-ductile damage
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Previous numerical studies
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The mechanism is not clear!




Numerical methods and model setup
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Numerical results
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Effects of brittle-ductile damage
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During forced compression, the effect of grain size reduction is not enough to dominate and
reduce the effective viscosity. The shortening process 1s mainly controlled by strain weakening.




Effects of brittle-ductile damage

Decrease the intensity of strain weakening

0.3

Weak
0 . 6 Somin

e33w63

With grain size evolution

log10(e},) (s7)

Without grain size evolution

-15 14 -13 -12

Subduction zoné

-
i
”
-’
»®’
»*'

Fomer spreading centers

«° Magmatic " Amagmatic

~ 25 -
£ *,
=< .
s
=l
= s, .
o0 20- N i Subduction
= XN
= E
S ]
- o,
fo %’~}
1 5 1 1 .I

Strain weakening intensity

e )
Fault strength ( caused by strain

weakening intensity) is the key factor

in controlling the near ridge subduction

1nitiation.
_




Conclusion

B Evolution processes:
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Key Points:

e Under forced compression, subduction
initiation starts along the newly
formed shear zone

e Strain weakening plays a key role in
the new shear zone and subduction
initiation

o Grain size reduction slightly enhances
the localization of new shear zones
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Abstract Although positive buoyancy of young lithosphere near spreading centers does not favor
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spontaneous subduction, subduction initiation occurs easily near ridges due to their intrinsic rheological
weakness when plate motion reverses from extension to compression. It has also been repeatedly proposed that
inherited detachment faults may directly control the nucleation of new subduction zones near ridges subjected
to forced compression. However, recent 3D numerical experiments suggested that direct inversion of a single
detachment fault does not occur. Here we further investigate this controversy numerically by focusing on the
influence of brittle-ductile damage on the dynamics of near-ridge subduction initiation. We self-consistently
model the inversion of tectonic patterns formed during oceanic spreading using 3D high-resolution
thermomechanical numerical models with strain weakening of faults and grain size evolution. Numerical results
show that forced compression predominantly reactivates and rotates inherited extensional faults, shortening and
thickening the weakest near-ridge region of the oceanic lithosphere, thereby producing ridge swellings. As a
result, a new megathrust zone is developed, which accommodates further shortening and subduction initiation.
Furthermore, brittle/plastic strain weakening has a key impact on the collapse of the thickened ridge and the
onset of near-ridge subduction initiation. In contrast, grain size evolution of the mantle only slightly enhances
the localization of shear zones at the brittle-ductile transition and thus plays a subordinate role. Compared to
the geological record, our numerical results provide new helpful insights into possible physical controls and
dynamics of natural near-ridge subduction initiation processes recorded by the Mirdita ophiolite of Albania.
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