TECHNISCHE
UNIVERSITAT

P Abstract
E -l

DRESDEN

Photography
encouraged

Outstanding Student & PhD
candidate Presentation contest

Flood Forecasting with Deep Learning LSTM Networks:
Local vs. Regional Network Training Based on Hourly Data
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Model: LSTM Encoder-Decoder

LSTM = Long Short-Term Memory %21

(Artificial Neural Network for efficient and sequential processing of

Motivation

The architecture: LSTM Encoder-Decoder 3!
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The model is trained on data from a diverse group of catchments in a region => generalisation X/ | J
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=> The model potentially learns universal system behaviour and is able to do forecasts for "unknown" catchments VAR
tn+1 Jtn+2

=> Increasing the amount of relevant data in training potentially improves discharge forecasts

X;,Y; ... Input-/Output signal (at timestep t)
h; ... Hidden State (at timestep t)
C, ... Cell State (at timestep t)
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Data

Case Study: 52 Catchments in Saxony, Germany

Static Input Data
Catchment attributes

Dynamic Input Data

.. attribute range
local training dataset

elevation: arithm. mean [m.a.s.l.]

precipitation observations (RADOLAN RW) in hourly resolution as area
average of catchment

|Elbersdorf :Wiesa ESt. Egidien

elevation: minimum [m.a.s.l.]

elevation: maximum [m.a.s.l.]

land cover [%]:
deciduous forest [ 0 I . 10]

[ ot TR 100}

[]3 30

grass and pasture [ 0 50]

attribute rage

discharge observations in hourly resolution

elevation: percentile 25% [m.a.s.l.]

event based training

evergreen forest elevation: percentile 50% [m.a.s.l.]

mixed forest elevation: percentile 75% [m.a.s.l.]

slope: arithm. mean [m/km]

regional training dataset: all 52 catchments

medium-scale vegetation I 0 40] slope: maximum [m/km]

crops [ 0 : : 80]

meaningful catchment attributes necessary in regional network training

. .. . . slope: percentile 25% [m/km]
for sensible categorisation / estimate of catchment responsiveness

urban and suburban [ 0 slope: percentile 50% [m/km]

attribute selection: based on sensitive catchment characteristics from
paper of Kratzert et al. 2019 ¥ (experiments done on CAMELS dataset
with daily resolution) + land cover attributes

wetland | 0 slope: percentile 75% [m/km]

inland water [o 1

mean yearly PET [mm/a]

bare soils and rocks [ 0

(52 |

mean yearly precipitation P [mm/a]

mean aridity PET/P [-]
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scaled attributes concatenated to dynamic input features

area [km2]

Elevation (DGM5)

- [)ilOt catchments for local and
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Results and Conclusion

RMSE = Root Mean Square Error NSE = Nash Sutcliffe Efficiency MSE_HW = Mean Square Error with special weight on peak flow range PSE = Phase Shift Error, temporal shift of simulation Peak Timing = Timing Error of peak flow Peak Error = Magnitude Error of peak flow

(optimum = 0) (optimum = 1) (optimum = 0) (optimum = 0) (optimum = 0) (optimum = 0)
Ti ven m | instan f Elbersdorf (6 h | im : o
est events (best model instance) of Elbersdorf (6 h lead time) —_ Mean metrics of 5-fold crossvalidation for test events of Elbersdorf
B LA L LA N r 3 N B R : -0 % 1.0 . 80 5 7 0 o
| event divides : - - £ 500 Fmdmgs:
40 - B P (observed) ~ 70 6
- e () (0bserved) ~10 2 1.75 0.8 5 o0 4 _ = Within the mean response time of the catchment (here:
E 20— — Q (simulated) for local model & @150 2 =. " E lead time of depicted hydrograps) there is potential for
- — Q (simulated) for regional model (trained with pilot catchment) - S E ... o 06 EX <3 2, = better discharge forecasts with both regional models
8‘: Q) {simulated) Tfor regional model (trained without pilot catchment) _ 20 g E : I g 0 I E 5 \ The regional e e e pi|0t catchmer;t
£ 0 - ' © ¢ 100 2 T 72 =3 L1 ) :
_‘c: | -258 = .. Z 04 mE: oz < x 6 produces equally satisfactory results as the regional
2 ‘ - 8, i / o model trained with it.
10 - /(\:M\j % 0.50 0.2 = 1 / -8
/ -35a 0.25 10 v
__ S
0 - — 40 g 0.00 0.0 0 0 0 -10
© © © © © © © o © © o © 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 1 3 5 . .
I LS N S S Y RS S G IV SRS lead time [n] Hypothesis:
o o o o o o o o p SV ASV ¥ p S The learned universal behaviour of the selection of Saxon
S o o o DN o S oS N o DN o : . )
] ] . catchments suffices for the prediction of flood events in
Test events (best model instance) of Wiesa (3 h lead time) a Mean metrics of 5-fold crossvalidation for test events of Wiesa "unknown" catchments in this region and within the
I - |'!|l" Ty R -0 E 1.0 80 5 7 0 range of the learned catchment attributes, thus
- : ! : 5 E 2.00 T 70 . — indicating the generalisation abilities of regional models.
— : _109; 1.75 0.8 \«T 4 -2
Z . @ % = 2
g _155 Ems s 06 EX c 3 2. % 4 Findi
& =" " — — c o Indings:
S 20 $ &y 100 N % 0 7 =, L] _ _
8 _5E S . Z 04 | 30 o2 /  x ~ 6 The hydrographs of both regional models oscillate at
Q c o v L D [0 - - . ang
2 308 Do / (é) - y a2 2 catchment Wiesa, thus.redum.ng.the apparent .rellz:.\blllty
i —— 0.2 1 / 1 -8 and robustness of their prediction. Many oscillations
“¥%E 0% 19 correlate with discharge impulses (dynamic input
— 40 “.5’_ 0.00 0.0 0 =/ 0 0 -10 feature).
3 3 5 1 3 5 1 3 5 1 3 5 1
lead time [h]
S Hypotheses:
Test events (best model instance) of St. Egidien (2 h lead time : e . s et :
( ) 9 ( ) — Mean metrics of 5-fold crossvalidation for test events of St. Egidien first: Regional models may be more reactive to
o .|| n r - oo - |r'|| N o T : -0 5E~ 1.0 80 5 7 0 discharge input as it is most correlative to the target
' : -5 E 2.00 - ) variable (discharge) and increasing the diversity of
_ . o 0.0 0 0
T 15.0 - 10 2 1.75 o~ 08 5 oo 4 _ — -2 tral.nlng catchments.may aTmpllfy thI.S effect as other
T 125 D 50 £ £, 5 / o | variables vary more in their correlation to the target
5 e T 06 E 50 =3 2, ' % -4 discharge.
% 20 S W % % 40 b E , = second: Wiesa has a smaller range of discharge values.
s 07 SRR < 04 130 a2 re x Absolute values of discharge observation oscillations
N c oy - L ()] © . -
5 50- -30.8 050 Cé) 20 o ? L may be comparable to other catchments, their relative
. = . 0 : 0 1 1 o size and impact however increases with decreasing
. ; El O'OO o \ ) ) ) N discharge range. Regional models may be used to
- N o ' . ' 5 . ’ 5 . 1 3 5 1 3 . : smaller relative oscillations in input.
L \ lead time [h]
o

Member of the network of:

DRESDEN
concept

SCIENCE AND \
INNOVATION CAMPUS

(A

=> big potential of regional network training, especially for "unknown" catchments

- Inclusion of other relevant catchment attributes (e.g. catchment shape factors)
- Analysis of sensitivity and impact of catchment attributes
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