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Motivation:

Analyzing the moisture budget in corridors of Atmospheric Rivers (ARs)

along their pathway is key to understand the spatiotemporal AR evolution

and precipitation efficiency and air mass transformation.

o Long-range aircraft allow calculating moisture budgets of AR corridors (Eq. 1)

by zig-zag flight pattern.

o Different flight legs for specific components of moisture budget.

Can the research aircraft HALO and its measurement instrumentation

close the moisture budget of Arctic ARs?
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Different measurement devices suit for specific budget quantities.

However, viewing perspective, resolution (e.g. Dorff et al., 2022) and

sampling frequency deteriorate airborne representation of AR conditions

(Dorff et al., 2023)  multiple collocated observations are envisioned.

Across the AR core front, ARs exhibit lateral gradients in thermo-dynamical

conditions (Cobb et al., 2021), the budget closure needs to distinguish

between pre-frontal and post-frontal sectors (Guan et al., 2020).

Comparison with ICON-2km simulations interpolated onto the flight

track (model set-up aligned to Schemann et al., 2020).
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The realisation during HALO-(AC)³:

The first week of the HALO-(AC)³ flight campaign (Spring, 2022) was characterised by a ‘family’ of ARs heading 

sequentially into the Arctic ocean. The strongest AR observed during research flight RF05 (Walbröl et al., 2023)

IVT divergence:

has two impacts (change in amount of moisture and precipitation)

that can be attributed to two components:
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Mass divergenceMoisture advection

o Dropsondes measure wind and moisture but restricted to sporadic profiles.

o A regression retrieval using brightness temperatures from the HALO microwave 

package (HAMP) & PAMTRA (Mech et al., 2014 & 2020) complements vertical 

moisture profiles

o Divergence derived via regression methods (Bony & Stevens, 2019)

Pre-frontal:

Surface precipitation:

o from  Ka-Band cloud and precipitation radar

 offset calibrated radar reflectivity (Ewald et al., 2019), melting layer 

detection for phase classification, average of multiple Z-R / Z-S relationships

o Radar precip. occurrence: 46% (pre-frontal), 22% (post-frontal) of flight time 

RF05: March 15
th

, 2022

Post-frontal:

o Similar vertical profiles in 

moisture transport diver-

gence for all datasets.  

o Pre-frontal sectors supply 

moisture

o Post-frontal moisture 

transport acts as a sink 

for the budget.

o Divergence calculations not 

feasible for sondes

(missing releases) and 

HAMP due to sea-ice.

BLeg: boundary leg
ILeg: internal leg

Temporal change in IWV:

o Temporal tendency from sondes

in warm sector during internal leg 

with similar location

o Since we lack real dropsondes, we 

place synthetic sondes in ICON to 

mimic their feasibility

o Sondes indicate moistening in the 

pre-frontal sector, while ICON 

misrepresents the low-level moisture

o Signs of post-frontal drying

Conclusions:

 Moisture advection dominates against mass convergence in contrast to mid-latitude ARs. 

 HALO’s instrumentation allows the derivation of all budget components that reflect

the frontal gradient in a reasonable order of magnitude compared to ICON.

 HALO provides unique vertical resolution of budget components.

 Airborne measurements can represent the correlation between precipitation and convergence. 

The simplified airborne closure yields an error of roughly 1 mm/h.

 Major error sources are the flight duration, the sounding frequency (Dorff et. al, 2023) 

and the limited representativeness of the flight curtain (Dorff et al., 2022).

 Missing post-frontal dropsondes increase uncertainties.

 Moisture advection dominates IVT divergence (convergence) 
throughout the entire AR cross-section.

General methods:

Evaporation:

o derivable from sonde-based SST temperature estimates (tbd.)

o ICON indicates minor role of evaporation; one order of magnitude 

smaller than other components

High-Altitude LOng-range research aircraft (HALO)

--
-
-
-
-

Pre-frontal: Post-frontal:

• Austen, D (2023): Precipitation rates in Arctic moist air intrusions from airborne radar measurements, Bachelor Thesis (UHH) 

• Bony & Stevens (2019): Measuring Area-Averaged Vertical Motions with Dropsondes, https://doi.org/10.1175/JAS-D-18-0141.1

• Cobb, A. et al. (2021): Atmospheric River Sectors: Definition and Characteristics Observed using Dropsondes from 2014-20 CalWater and AR Recon, https://doi.org/10.1175/MWR-D-20-0177.1

• Dorff, H. et al. (2022): Horizontal geometry of trade wind cumuli – aircraft observations from a shortwave infrared imager versus a radar profiler,

https://doi.org/10.5194/amt-15-3641-2022

• Dorff, H. et al. (2023): Observability of Moisture Transport Divergence in Arctic Atmospheric Rivers by Dropsondes, to be submitted

• Ewald, F. et al. (2019): Calibration of a 35 GHz airborne cloud radar: lessons learned and intercomparisons with 94 GHz cloud radars, https://doi.org/10.5194/amt-12-1815-2019

• Guan, B., Waliser, D.E. and Ralph, F.M. (2020), A multimodel evaluation of the water vapor budget in atmospheric rivers. https://doi.org/10.1111/nyas.14368

• Mech M. et al. (2014): HAMP – the microwave package on the High Altitude and LOng range research aircraft (HALO), https://doi.org/10.5194/amt-7-4539-2014

• Mech M,. et al. (2020): PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere,

https://doi.org/10.5194/gmd-13-4229-2020

• Schemann V., et al. (2020): Simulation of mixed-phase clouds with the ICON large-eddy model in the complex Arctic environment around Ny-Ålesund, https://doi.org/10.5194/acp-20-475-2020

The airborne concept of moisture budget closure:

Local change in 

integrated water vapour
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