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Although cloud‐affected satellite observations are heavily
used for nowcasting applications, their use in regional data
assimilation is very limited despite possible benefits for con‐
vective scale forecasts. In this paper, we estimate the po‐
tential impact of assimilating cloud‐affected satellite obser‐
vations of visible (0.6 µm) and near thermal infrared wave‐
length (6.2 µm and 7.3 µm) relative to the impact of assimi‐
lating radar reflectivity observations. We employed observ‐
ing system simulation experiments (OSSE) with an identical
twin nature run for two cases of strong convective summer‐
time precipitation. Observations are simulated using the ra‐
diative transfer model RTTOV/MFASIS and assimilated by
the ensemble adjustment Kalman filter in theData Assimila‐
tion Research Testbed (DART). The Weather Research and
Forecasting (WRF) model at 2‐km grid resolution was used
for forecasts. Results show that satellite observations can
be nearly as beneficial as three‐dimensional radar reflectiv‐
ity observations. Under favorable conditions, where the
prior contains no error in the stage of storm development
but only in horizontal position and strength, the assimila‐
tion of visible observations lead to 88% of the radar impact.

Abbreviations: BT brightness temperature, CAPE convective available potential energy, CIN convective inhibition.
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Under more difficult conditions, the impact of visible and
infrared observations still reached 50% and 79%, respec‐
tively.

1 | INTRODUCTION1

Clouds are the first area‐wide observable signal of convection and heavily used in nowcasting applications. But in2

contrast to nowcasting, the use of cloud‐affected satellite observations in data assimilation is very limited (Gustafsson3

et al., 2018). Clouds are detectedmuch earlier by the visible satellite channel than by radars which aremore commonly4

used in regional data assimilation systems. In contrast to radar, satellite observations are available in most parts of5

the world including mountainous or sparsely populated areas and they provide homogeneous quality across borders6

(Maddox et al., 2002; Roebeling et al., 2012; Saltikoff et al., 2019; Martinaitis et al., 2020). Additionally, thermal7

infrared satellite channels observe tropospheric water vapor content (6.2 & 7.3 µm) as well as cloud‐top temperature8

(10.8 µm). Near‐infrared channels can distinguish between ice and water clouds (1.6 µm) and detect nighttime low‐9

level clouds and fog (3.9 µm). Additionally, visible channels can observe low‐level stratus clouds during daytime,10

which is a major issue for regional weather forecasts (Hu et al., 2022). Thus, there is a large potential for improving11

weather forecasts by assimilating cloud‐affected satellite observations. Nevertheless, current operational regional12

data assimilation systems largely ignore satellite observations of clouds and thereby omit crucial information on clouds13

and developing storms.14

The assimilation of cloud‐affected satellite observations in current assimilation systems is a challenging task. How‐15

ever, most challenges equally occur for more commonly assimilated radar observations. Firstly, the limited numeri‐16

cal representation of cloud processes and hydrometeors as well as simplifications of observation operators lead to17

systematic errors between models and observations (Geiss et al., 2021; Scheck et al., 2018), which violates a basic18

assumption of current data assimilation schemes (Gustafsson et al., 2018). These issues were avoided in this study by19

employing an observing system simulation experiment (OSSE) with an identical model for the nature run and forecasts,20

as well as perfect observation operators in the forecast. Secondly, cloud‐affected observations violate the assump‐21

tion of linear observation operators and Gaussian error distributions as the observations are nonlinear functions of22

model state variables and their error distributions are often non‐Gaussian. In consequence, assimilating these obser‐23

vations violates assumptions of current data assimilation schemes and may lead to a sub‐optimal analysis in certain24

conditions.25

While several studies investigated the assimilation of infrared channels, visible channels have received little at‐26

tention by the research community so far. Since the fast visible operator MFASIS (Scheck et al., 2016) was published,27

only two studies applied the operator for data assimilation and investigated the impact of these observations on28

convective‐scale data assimilation in an idealized and a near‐operational setup: (Schröttle et al., 2020) conducted an29

idealized OSSE and found a positive impact by assimilating infrared and visible observations with the infrared lead‐30

ing to higher impact. (Scheck et al., 2020) evaluated the impact of only visible observations in a case study with a31

near‐operational assimilation system and found beneficial impact not only on cloud cover but also on temperature, hu‐32

midity and precipitation. Given their experimental setup, however, they could not quantify the impact in comparison33

to other observation types. Additionally, both previous studies used the regional model ICON and a local ensemble34

transform Kalman filter (LETKF) data assimilation system, whereas the impact of visible observations has not been35

investigated in any other convection‐permitting numerical weather prediction (NWP) system. This motivated the di‐36

rect comparison of the impact of different observation types in the present study and the use of a different modelling37
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and assimilation system.38

Most studies on the assimilation of thermal infrared satellite observations focused on wavelengths in the water39

vapor sensitive band (5‐8.5 µm) since these wavelengths are less sensitive to surface emission, which is difficult40

to model accurately. (Otkin, 2012a,b) pioneered the direct assimilation on four channels between 6.2 and 8.5 µm,41

albeit at a resolution of 15 km that only partly resolves deep convection. In convection‐permitting models, infrared42

observations had a positive analysis and forecast impact for the prediction of typhoons, mesoscale convective systems43

and severe weather events under weak and strong large‐scale forcing (Honda et al., 2018; Zhu et al., 2022; Sawada44

et al., 2019; Jones et al., 2016; Cintineo et al., 2016; Eure et al., 2023). A direct comparison between the impact of45

visible and infrared satellite channels with that of radar observations has, however, never been conducted so far.46

Data‐denial experiments with operational NWP systems can be misleading in the way they estimate the analysis47

impact of a new observation type as the impact of additional observations may be hampered by systematic model48

deficiencies without extensive tuning of the assimilation and model physics settings. Additionally, increments from49

other observation types may conceal the impact of the newly added observations. To avoid this, we assess the50

forecast impact of each observation type in separate experiments. The separate assimilation of different observation51

types allows for a detailed analysis of the effects of each type and reveals potential weaknesses of each type. To52

put the impact of satellite observations in this setup in the context of more commonly assimilated observations, we53

additionally conducted comparable experiments that assimilated 2D and 3D radar observations. Furthermore, current54

operational systems are sub‐optimal inmany respects, e.g. concerning the representation of hydrometeors and related55

biases as well as for the representation of related model errors. The resulting systematic differences between the56

forecast model and the nature run affect the analysis quality and need to be taken into account when estimating the57

absolute impact of observations in an OSSE (Errico and Privé, 2018). In this study we avoid systematic model error58

to focus on the efficacy of assimilating cloud‐related observations in an ensemble Kalman filter and only estimate59

the impact of observations in relative terms. Thus, we assess the forecast impact in a perfect model OSSE using the60

identical model configuration for the nature run and forecasts.61

Convective‐scale data assimilation is a challenging task full of open research questions, as e.g. outlined in (Hu et al.,62

2022). To gain further insights on the assimilation of additional complex observation types, researchers have studied63

the assimilation in weather scenarios of increasing complexity for data assimilation: (1) isolated supercells triggered64

from a ”warm‐bubble” (Snyder and Zhang, 2003; Tong and Xue, 2005), (2) supercells, convective lines and multicells65

(Aksoy et al., 2009) and (3) chaotically triggered deep convection (Bachmann et al., 2019, 2020). The latter describes66

deep convection triggered at random locations and is termed ”random” case in this paper. It can be considered one of67

the most difficult and least predictable scenarios, as this case exhibits a high sensitivity to initial conditions and low68

predictability due to fast error growth and interaction between different cells.69

In this study, we evaluate two cases, the less predictable ”random” case and the ”warm‐bubble” case and estimate70

the potential impact of assimilating visible and infrared satellite observations, relative to the impact of assimilating71

radar reflectivity. These two scenarios are used to specifically investigate:72

1. if the ensemble adjustment Kalman filter (EAKF) is able to extract useful information from visible observations73

into a convective‐scale model;74

2. the relative impact of visible and infrared observations on precipitation and cloud forecasts relative to the impact75

of radar observations (section 3.1);76

3. the effect of assimilating visible and infrared observations on unobserved state variables (section 3.2);77

4. why the assimilation of satellite observations is surprisingly beneficial in one case but less beneficial in the other78

(section 3.3).79
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By this investigation, we intend to contribute to better understanding of the impact of satellite observations which is80

crucial for an efficient use of computational, observational and staff resources (Gustafsson et al., 2018).81

2 | EXPERIMENTAL DESIGN82

2.1 | Description of the cases83

We estimated the potential impact of cloud‐affected satellite observations in two scenarios, one isolated supercell84

and scattered supercells. Both cases were simulated on the same idealized domain with a homogeneous flat surface85

and horizontally periodic boundary conditions (see section 2.2). Both cases share the same base state profiles of86

temperature, water vapor, moisture andwind illustrated in figure 1. It is amodified sounding fromPayerne, Switzerland87

on 30 July 2008 and offers a highly unstable environmentwith 2670 J/kg CAPE and 26 J/kg CIN at 7UTC in the nature88

run. In this paper, time UTC is equivalent to local solar time since the solar radiation is that of 0∘ longitude. We start89

with a description of the nature run. A more detailed description of initial conditions and ensemble perturbations90

follows in section 2.3.91

Nature run for case "random"92

In the ”random” case, small random perturbations of temperature and vertical velocity (for details see section 2.3)93

trigger storms at random locations scattered throughout the whole domain. The nature run is initialized at 6 UTC94

(= local solar time) with the sounding profile depicted in figure 1. Figure 2 shows the evolution of storms from the95

perspective of a 7.3 µm infrared satellite image and figure 3 shows the same in 0.6 µm visible reflectance. At 1196

UTC, five hours into the simulation, convection reached altitudes of about 10 km. Shortly after at 12 UTC, about97

10‐15 cells are visible and continue to grow while others dissipate. The resulting storms are in different stages of98

their development and interact dynamically, which leads to fast growing model error and a low predictability on the99

order of hours. After 16 UTC, convection decays.100

Nature run for case "warm‐bubble"101

In the second case, a positive temperature increment (”warm bubble”) is added to the initial temperature field (see102

figure 4). It triggers isolated and well‐organized storms in a confined region of the domain and suppresses convection103

elsewhere. Similar warm‐bubbles have been used by (Snyder and Zhang, 2003) and (Tong and Xue, 2005).104

This warm bubble case was initialized at 12 UTC with initial conditions as described in section 2.3. Figures 5 and105

6 display the evolution in simulated satellite images of the 7.3 µm and the 0.6 µm channel. Within a few minutes of106

model integration, deep convection developed in the nature run. At approximately 1235 UTC, the first precipitation107

developed. After 1730 UTC, the storms reached the domain boundary.108

2.2 | Prediction model109

We used the Weather Research and Forecasting model (WRF) version 4.3 (Skamarock et al., 2021) in an idealized110

mode for both the forecast ensemble as well as well as the nature run in identical configurations (identical twin). As111

in preceding studies (Lange and Craig, 2014; Bachmann et al., 2019, 2020; Schröttle et al., 2020), we neglected the112

Coriolis force as it does not have a significant effect on the dynamics at this timescale. Also, it would lead to veering113

of the mean wind given the periodic domain. The physics parametrizations closely follow the configuration of the op‐114

erational HRRR model described in (Benjamin et al., 2016) with microphysics from (Thompson et al., 2008); RRTMG115
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F IGURE 1 Skew T‐log p diagram of the nature run initial condition for the ”random” case, from domain average
fields. Shown are domain‐average profiles of temperature, dewpoint and a parcel lifting curve. The temperature
perturbation in the warm‐bubble case modifies this profile.

short‐ and longwave schemes (Iacono et al., 2008), MYNN 2.5 for PBL and surface layer parametrization from Nakan‐116

ishi and Niino (2006), NOAH land surface model Cuenca and Tewari (2004) and without cumulus parametrization.117

Default dynamics options were used with an adaptive timestep between 6 and 16 s.118

Domain description119

The domain features 200 x 200 mass grid points with a 2 km resolution. The layer depth is 25 m at the surface and120

increases to about 500 m at 3 km above ground, then staying roughly constant until the model top at about 21.5 km,121

at staggered level 51. The upper boundary condition is a Rayleigh relaxation layer above 15 km. The surface is homo‐122

geneous and flat terrain at 489 m altitude above sea level and of type ’Dryland Cropland and Pasture’ (IVGTYPE=2)123

with 50% vegetation fraction on soil type ’loam’ (ISLTYPE=6). Solar radiation resembles a summer day (30 July 2008)124

at a latitude of 45∘ N.125

2.3 | Initial & boundary conditions126

Initial conditions of the nature run127

The initial conditions of the nature run feature a highly unstable stratification with a CAPE of 2670 J/kg and a CIN of128

26 J/kg at 7 UTC, such that relatively small perturbations trigger deep convection (figure 1). The profiles were taken129

from (Lange et al., 2017), (Bachmann et al., 2019) and (Schröttle et al., 2020), but modified for humidity and wind. The130

humidity was clipped to 80% relative humidity, which reduced the humidity in the pressure intervals 900‐750 hPa and131

350‐200 hPa, in order to avoid stratiform clouds in the whole domain. The wind‐shear was increased considerably to132
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F IGURE 2 Infrared 7.3 µm satellite images of the ”random” case’s nature run

a bulk shear of 14, 38 and 61 knots in the layers 0‐1, 0‐3 and 0‐6 km, respectively, to support long‐lived supercells.133

In the ”warm‐bubble” case, an additional temperature increment ΔT(x, y, z) was added to the initial temperature134

field, defined as135

ΔT = A exp⎛⎜
⎝

− ( r(x, y)cr
)
2
⎞⎟
⎠
exp(− ( zcz

)
2
) (1)

where r(x, y) = √(x− xc)2 + (y− yc)2 is the distance from the bubble center; A is the maximum perturbation (3 K),136

the tuple (xc, yc) is the center of the bubble, cr is the horizontal decay (15 km) and cz is the vertical decay (2 km).137

Initial perturbations in the forecast ensemble138

While a real‐data experiment comes with a prior forecast ensemble, we have to make a realistic guess about the prior139

uncertainty for this OSSE. To be consistent with prior publications, we use the approach from (Schröttle et al., 2020)140

that facilitates two kinds of perturbations: (1) Vertically auto‐correlated profile perturbations representing large‐scale141

errors and (2) small‐scale boundary layer noise.142

(1) Before initializing the ensemble forecast, we perturb the vertical profile of temperature, moisture and wind.143

This inter alia leads to modified convective stability, which delays or accelerates the evolution of deep convection.144

The perturbations are created by choosing one random number for every 20th vertical level of the original 200 level145

profile and then interpolating between them, such that we end up with a vertically auto‐correlated profile of random146

perturbations for every ensemble member. The random numbers are created using a standard deviation of 0.25 K for147

temperature and 2 % for relative humidity and wind. The resulting profiles are used as input profiles for WRF’s ideal148
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F IGURE 3 Visible 0.6 µm satellite images of the ”random” case’s nature run

program, which slightly modifies the profiles for hydrostatic balancing.149

(2) Small‐scale random noise was added to the temperature and vertical velocity in the lowest levels to avoid150

unrealistic spatially‐homogeneous fields. The perturbations are relaxed toward zero with height: for temperature151

following x exp((p − psfc)/25) with p in hPa, for velocity following x exp((1 − k)/2) where k is the level number,152

where x was drawn from a Gaussian with σ = 0.02 (K or m/s) for each column. Although the horizontal variation153

of temperature was this small at initialization time, the perturbations grew considerably in the following six hours,154

reaching a spread of 1 K in temperature, 20% in relative humidity and 2 m/s in zonal wind (random case, figure 7). In155

the warm‐bubble case, the horizontal average spread was smaller due to the shorter spin‐up time of 0.5 h and the156

small fraction of the domain in which convection took place, reaching a spread of 0.5 K in temperature, 5% in relative157

humidity and 1 m/s in zonal wind at 13 UTC (not shown).158

Additional perturbations in the "warm‐bubble" case159

In the ”warm‐bubble” case, we imposed another uncertainty about two parameters: (see equation 1)160

• the horizontal location of the warm‐bubble by perturbing the center (xc,yc) in the north/south and east/west161

direction by ± 60 km (uniformly random) and162

• the spatial extent and strength by perturbing the amplitude A by ± 1 K (uniformly random).163
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F IGURE 4 Cross‐sections through the warm‐bubble (temperature perturbation): vertical‐horizontal slice (top) at
north_south=0 and horizontal‐horizontal slice (bottom) at Height=0, both marked by a dashed line.

2.4 | Simulated observations164

Four types of observations have been used in this study: 1) Satellite observations of visible reflectance at a wave‐165

length of 0.6 µm reveal how much sunlight is reflected by clouds or the surface. Contrary to radar reflectivity, the166

observations already provide information on clouds in their early stage, right after rising plumes reach the conden‐167

sation level. Reflectance describes the ratio of reflected radiance to the total incoming irradiance and is therefore168

a dimensionless value in the range of 0 to 1. The lowest possible value in practice is, however, determined by the169

surface albedo, which is around 0.27 in our setup. The observation error for the visible channel was chosen to be 3%170

following (Schröttle et al., 2020).171

2) Satellite observations of infrared brightness temperature of the 6.2 µm channel (MSG‐4 SEVIRI channel 5, GOES172

ABI and HIMAWARI AHI band 8) are specifically sensitive to upper tropospheric water vapor and clouds. For clouds,173

the observationsmainly provide information on the cloud top height, as can be seen by lower brightness temperatures174

for higher cloud tops. The observation error was chosen to be 1 K, similar to (Jones et al., 2020) who used 1.25 K.175

3) Satellite observations of infrared brightness temperature of the 7.3 µm channel (MSG‐4 SEVIRI channel 6, GOES176

ABI and HIMAWARI AHI band 10) provide similar information as channel 5/8 but are more sensitive to lower tropo‐177

spheric water vapor. An observation error of 1 K was selected, which is lower than (Jones et al., 2020) who used178

1.75 K (3.5 K) for non‐cloudy (cloudy) observations.179

4) Finally, three‐dimensional radar reflectivity (10 cm) serves as a reference observation type to for evaluating the180

impact of satellite observations. An observation error of 2.5 dBz was chosen, half the error of (Wheatley et al., 2015)181

and (Bachmann et al., 2020), who used 5 dBz.182

Observations yowere generated using theDataAssimilationResearch Testbed (DART) provided by (UCAR/NCAR/CISL/DAReS,183
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F IGURE 5 Infrared 7.3 µm satellite images of the warm‐bubble case’s nature run

2022). It interpolates the nature run’s state xnat to each observation’s location and applies an observation operator184

ℋ to the state xnat before adding Gaussian observation error:185

yo = ℋ(xnat) + ε ε ∼ 𝒩(0,σo) (2)

The resolution of satellite observations was effectively grid‐scale (2 km). The model equivalents of observations,186

yb = ℋ(xb), were generated using the same observation operators to avoid systematic errors between forecast and187

observations.188

Satellite observationswere simulated using the default Chou‐scaling for the infrared channels andMFASIS (Scheck189

et al., 2016) for the visible channel, as provided in RTTOV v13.3 (Saunders et al., 2018). For radar reflectivity, the190

operator included in the WRF Thompson microphysics module was used. The surface albedo and emissivities are191

given by RTTOV default values. To simulate cloudy radiances, we assumed an effective particle diameter of 20 µm192

for water droplets and 60 µm for ice crystals. For the satellite geometry, we assumed a geostationary satellite at193

the equator with an azimuth of 180∘ and zenith of 45∘. The solar angles were computed using the pysolar module194

assuming latitude of 45∘ and longitude 0∘.195

2.5 | Assimilation system and settings196

Our experiments applied the ensemble adjustment Kalman filter (EAKF) by (Anderson, 2001) included in the Data197

Assimilation Research Testbed (DART, (Anderson et al., 2009), https://dart.ucar.edu). The EAKF is a serial deter‐198

ministic square root filter, which assimilates one observation after another. The following variables were updated:199

https://dart.ucar.edu
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F IGURE 6 Visible 0.6 µm satellite images of the warm‐bubble case’s nature run

temperature, water vapor mixing ratio, dry air mass in column, geopotential, wind components U, V, W, cloud water200

and ice mixing ratio.201

Posterior covariance inflation was applied since experiments without inflation indicated that analysis ensemble202

spread would have been underestimated. Specifically, relaxation to prior spread (RTPS) with factor α = 0.9 was used203

to inflate ensemble perturbations. Note that a value of α = 1 would prevent any variance reduction and restrict up‐204

dates to updates of the mean. Meanwhile, α = 0 would mean no inflation. We localized covariances in the horizontal205

to 20 km half‐width of the Gaspari‐Cohn function. Radar observations were localized to 3 km in the vertical. Satellite206

radiances were not localized vertically. Lastly, a sampling error correction (Anderson, 2012) was applied. Although207

it is common in operational DA, we did not reject observation outliers as we saw relatively strong error reduction by208

observations with large first‐guess difference.209

The horizontal distribution of observations was chosen to be equal for all observation types. In the horizontal,210

we assimilated observations every 10 km. However, we did not assimilate observations within 50 km of the domain211

boundary so that only observations of the inner 150 x 150 km were assimilated. This was necessary to avoid discon‐212

tinuous increments at domain boundaries since we assumed a periodic WRF domain but a limited area domain in213

DART. In the vertical, we assimilated radar reflectivity observations every 2 km from 2 to 14 km.214

Superobbing can be a useful approach to assimilate high‐resolution observations as it averages observations215

towards the resolved scale of the model. However, contrary to our first expectations, we found that superobbing216

5 x5 observations towards 10 km resolution did not generally improve forecasts. As the difference in impact was217

negligible, we decided not to include those experiments in this manuscript.218

The assimilation of satellite observations in a Gaussian filter is sub‐optimal for reasons of non‐Gaussianity, like219

heteroscedasticity (the increase of variance with cloudiness) or boundedness. Additionally, non‐linear observations220
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F IGURE 7 Vertical profile of ensemble spread (horizontal average) of temperature, relative humidity and the
u‐wind component at 13:00 prior to the first assimilation in the ”random” case.

operators aswell as sampling error and suboptimal ensemble perturbations lead to a suboptimal analysis and ensemble221

spread. These effects can bemitigated by assigning inflated observation errors (Geer andBauer, 2011), but the optimal222

choice of assigned observation errors often needs to be tested by sensitivity studies (see section 3.3).223

2.6 | Assimilation experiments224

The experiments of this study are listed in table 1. To investigate optimal assigned observation error settings, we225

conducted sensitivity experiments with different assigned observation errors in section 3.3. The resulting optimal226

observation errors used for the standard experiments are listed in table 1.227

The timeline of the experiments is illustrated in figure 8. In the random case, the forecast ensemble was initialized228

at 7 UTC and ran freely without assimilation for six hours. By 13 UTC, the model had generated a sufficient amount229

of spread (figure 7). From 13 to 14 UTC we assimilated five times (every 15 minutes), followed by free forecasts until230

18 UTC.231

In the warm‐bubble case, we started to assimilate at 12:30 after a free forecast of 30 minutes. Despite of this232

short spin up time, the deep convection had already developed. From 12:30 to 13:30 UTC we assimilated five times,233

followed by free forecasts until 18 UTC. Although the assimilationwindow is one hour in both cases, it covers different234

phases of convection in each case.235

Figure 9 shows the timeseries of the strongest cloud signal in each observation type, i.e. the lowest value for236

infrared BT and the highest value for visible and radar observations. The earliest stages of convection were only237

detected by visible observations. For radar, it took up to 60min for convection to become apparent in the observations.238
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Abbreviation Assimilated observation type σ generate σ assimilate (range of tested values)
VIS Visible reflectance 0.6 µm 0.03 0.03 (0.03‐0.12)
WV62 Brightness temperature 6.2 µm 1 K 1 K (1‐3)
WV73 Brightness temperature 7.3 µm 1 K 1 K (1‐3)
REFL Radar reflectivity 10 cm 2.5 dBz 2.5 dBz (2.5‐7.5)
NoDA none ‐ ‐

TABLE 1 Experiments and their assimilated variable together with standard errors for generating observations
(measurement error) and assimilating observations (assigned error). The range of tested values for the assigned error
is indicated in parentheses.

F IGURE 8 Timeline of forecasts and assimilation in the ”random” and the ”warm‐bubble” case.

In the ”random” case, all observation types detected convection at the start of the assimilation window. In the warm‐239

bubble case, however, infrared channels did not detect convection at the beginning of the assimilation, but later in240

the assimilation window. Overall, the warm‐bubble case was more predictable. A measure of uncertainty is the time241

duration between earliest and latest convective initiation in the ensemble. While the time difference of convective242

initiationwas 1.5 h in the ”random” case, the initiation happenedwithin 20min in the ”warm‐bubble” case (not shown).243

This demonstrates that adding a warm bubble can act to synchronize the triggering time of convection across the244

ensemble since it forces convection regardless of the stratification.245

3 | RESULTS246

The first goal in this section is to estimate how forecasts of precipitation and cloudiness benefit from assimilating247

cloud‐affected satellite observations (section 3.1). Subsequently, we analyse the impact on vertical profiles of state248

variables in section 3.2. Lastly, we try to explain the larger impact of 3D radar observations compared to 2D satellite249

observations in the case of random convection in section 3.3.250
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3.1 | Relative potential impact251

We evaluate forecasts using the Fractions Skill Score (FSS) for three quantities:252

• Precipitation rate > 1 mm/h253

• Radar reflectivity > 50 dBz254

• Visible reflectance > 0.6255

The 12 km window FSS of these quantities describes how well a forecast was able to pinpoint the location of precip‐256

itation and optically thick clouds. We calculated the FSS using neighborhood ensemble probabilities after (Schwartz257

et al., 2021) in contrast to e.g. (Scheck et al., 2020) who calculated the FSS from the ensemble mean.258

Case "random"259

Figure 10a shows the impact of assimilating four different observation types in the case with deep convection ran‐260

domly scattered throughout the whole domain. Compared to the REFL experiment and averaged over 14 ‐ 17 UTC,261

the VIS experiment revealed an FSS improvement of 50%, the WV73 experiment 79% and the WV62 experiment262

20% for the prediction of radar reflectivity > 50 dBz. Within the first forecast hour, the VIS experiment performed263

nearly as well as the REFL experiment but lost impact thereafter. The WV73 experiment showed similar skill as the264

VIS experiment in the first 1.5 h lead time, but provided better forecasts afterwards. TheWV62 experiment’s forecast265

skill was the lowest of all observation types. It seems that channels which see deeper into the atmosphere (visible and266

7.3 µm) have a higher impact than the 6.2 µm channel which does not sense lower tropospheric vapor and clouds.267

Overall, forecasts in the REFL experiment were best, with 2.5 hours of skillful forecasts for light precipitation and268

1.5 hours for strong precipitation, except for the prediction of visible reflectance > 0.6, where forecasts of the VIS269

experiment were slightly better.270

In figure 11a, we show the RMSE of visible reflectance and 7.3µm brightness temperature forecasts, relative to271

the RMSE of the noDA experiment. Specifically, we computed the RMS error of the ensemble mean forecast over272

all 200 x 200 grid points, while only 31 x 31 satellite observations were assimilated. At analysis time, the experiment273

that assimilated visible reflectance had the lowest errors in visible reflectance as expected. The same applies to the274

WV73 experiment and the verification of 7.3 µm BT. After the analysis however, the RMSE of the WV73 experiment275
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was similar to the error of the REFL experiment. The experiments REFL, VIS andWV73 overall showed similar skill for276

predicting the visible channel, while the WV62 experiment had lower skill. The VIS experiment had relatively good277

forecasts of 7.3 µm BT and the WV73 experiment had good forecasts of visible reflectance. The WV62 experiment278

had less accurate forecasts of both 7.3 µm BT and visible reflectance, which is presumably related to its higher peak279

of its weighting function leading to smaller sensitivity to low and mid‐level clouds.280

Case "warm‐bubble"281

Figure 10b shows the forecast impact in terms of FSS, but now for the warm‐bubble case. In general, all observation282

types lead to a significant FSS improvement compared to the noDA experiment, but some aspects should be noted:283

Firstly, the assimilation of visible reflectance in the VIS experiment improved the FSS faster than the assimilation284

of infrared BT in the experiments WV62 and WV73. As visible reflectance detected convection at an early stage285

(figure 9), the VIS experiment was at a clear advantage. The initially high impact in the VIS experiment deteriorated286

in the first forecast hour, handing over the lead to the REFL experiment. Yet, the VIS experiment overtook the REFL287

experiment again at around 3 hours lead time in precipitation scores. Secondly, the experiments WV62 and WV73288

produced similar results, except for the FSS of cloudiness (visible reflectance > 0.6), wheremost of the impact vanished289

within 30 min of free forecast in the WV62 experiment. Note that the 6.2 µm channel is more sensitive to higher290

tropospheric water vapor, while the 7.3 µm channel is more sensitive to lower tropospheric water vapor. Thirdly, the291

experiments REFL and VIS show a similar performance except for the first hour, where the skill was slightly lower for292

precipitation. Interestingly, the VIS experiment does not show a substantial advantage over the REFL experiment in293

the FSS for cloudiness, although it directly assimilates visible reflectance. For cloudiness, both the REFL and the VIS294

experiment gave similar performance. Compared to the REFL experiment, the experimentsWV62 andWV73 showed295

less impact. Lastly, the REFL experiment outperformed all other observation types in the first forecast hour for light296

and strong precipitation but only slightly for cloudiness, where the VIS experiment was best most of the time.297

Figure 11b shows the RMSE of forecasts of visible reflectance and 7.3 µm BT for the warm‐bubble case. Visible298

reflectance was best forecasted by the REFL experiment, followed by the VIS experiment with similar forecast score,299

except for the first forecast hour. The experiments WV62 and WV73 performed worse, as they removed less error300

until the last assimilation time. While the experiments REFL and VIS removed up to 30% of error, the experiments301

WV62 and WV73 removed only 15‐20% of visible reflectance error. As for visible reflectance, the REFL experiment302

had the lowest error in 7.3 µmBT, removing 40% of RMSE until the last assimilation time. Other experiments removed303

similar amounts of error, but lost impact faster. On average, the VIS experiment had second best RMSE in 7.3 µm BT,304

followed by WV62 and WV73.305

Comparison of cases306

A major difference between the two cases is that the warm‐bubble case is more predictable than the ”random” case.307

While the REFL experiment skillfully predicted strong precipitation for nearly four hours (FSS>0.5) in thewarm‐bubble308

case, the random case was skillfully predicted for only 1.5 hours. The difficult forecasting conditions probably result309

from faster growth of errors in the ”random” case, as storms interact with each other and continuously trigger new310

cells, leading to a chaotic environment which is very sensitive to the initial conditions.311

To compare the relative impact of the observation types, table 2 shows the relative FSS improvement over noDA312

of each experiment compared to the REFL experiment. Overall, satellite observations lead to a remarkable impact313

given that the satellite experiments assimilated only 1/7‐th of the number of observations compared to the REFL314

experiment. Table 2 also demonstrates that satellite and especially visible observations can be effectively used by the315

ensemble adjustment Kalman filter and lead to long lasting forecast impact.316
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F IGURE 12 The probability for visible reflectance > 0.5, in the noDA run (a,c) and after the assimilation in the
VIS experiment (b,d). The ensemble‐derived probability ranges black (0) to white (1) and the nature (ℋ(xnat) > 0.5)
is shown in red contours. The warm‐bubble case at 13:35 is shown in (a,b). The ”random” case at 14:05 is shown in
(c,d).

Visible observations detect convection earliest and allow the filter to narrow down the location of convection317

much earlier than other observations can. To date, only (Schröttle et al., 2020) compared the assimilation of visible318

(0.6 µm) and infrared observations (6.2 µm) in a convective‐scaleNWPmodel. Despite the similar setup, we clearly see319

more impact from assimilating visible observations than from 6.2 µm BT observations. This contrasts with (Schröttle320

et al., 2020) who found stronger impact from the 6.2 µm channel and less impact from visible observations. Yet, this321

differencemight be related to overly inflated observation errors for visible observations in that study, as they assigned322

an up to 10 times inflated observation error for visible but not for infrared observations, which presumably led to a323

lower weight for visible observations.324

Although the WV62 experiment showed competitive forecasts of precipitation in the warm‐bubble case it per‐325

formed poorly in forecasting cloudiness in both cases and precipitation in the ”random” case (figure 10). This might326

be due to the higher peak of the weighting function of the 6.2 µm channel compared to the 7.3 µm channel.327

In the warm‐bubble case, the uncertainty lies mostly in the warm‐bubble location and strength. As the evalu‐328

ation showed, these can be easily derived from satellite observations. In the ”random” case, however, visible and329

6.2 µm BT observations lead to substantially less impact. We hypothesize that a possible explanation might be miss‐330

ing the vertically resolved information from radar observations. This hypothesis is investigated further in section 3.3331

by assimilating 2‐dimensional instead of 3‐dimensional radar reflectivity. Except for the higher impact of radar in332

the warm‐bubble case, however, the experiments overall reveal the value of satellite and particularly visible observa‐333

tions, especially in scenarios with an uncertain location of convection. Figure 12 illustrates how assimilating visible334

reflectance improved the forecast of the location of clouds in the ensemble.335
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Experiment Case Case

”random” ”warm‐bubble”

REFL 100% 100%

REFL‐2D 64% /

VIS 50% 88%

WV73 79% 74%

WV62 20% 76%

TABLE 2 Fraction of each experiment’s FSS improvement over noDA, relative to the REFL experiment in the
respective case, i.e. (FSSexp ‐ FSSnoDA)/(FSSREFL ‐ FSSnoDA) for the event of reflectivity > 50 dBz; where FSS is
averaged over the first three forecast hours

3.2 | Impact on model state variables336

To understand howmodel variableswere updated by the assimilation, figure 13 shows vertical profiles for temperature337

(top left), vapor mixing ratio (top right), cloud water and ice mixing ratio (bottom left and right). Each panel shows the338

MAE of the noDA experiment (left), the MAE reduction in the experiment (center) and the relative MAE reduction339

in % of the noDA MAE (right). The error was evaluated at 14:05 in the ”random” case, five minutes after the last340

assimilation, as mean (over 961 observed atmospheric columns) absolute error of the ensemble mean forecast.341

The temperature error profile (figure 13a) shows four peaks, at the surface, at 5 km, 8 km and at 13 km. The error342

reduction was largest in these layers in absolute and relative terms. The experiments WV62 and WV73 removed343

nearly as much temperature error as the REFL experiment, reaching up to 0.5 K and 40% of error. The VIS experiment344

also reduced the errors, but reaches only 0.2 K and 25%.345

Regarding water vapor (figure 13b), the relative error reduction was largest at altitudes with low vapor concen‐346

tration, reaching 40% at 7 km but still removing 20% in the boundary layer. The experiments VIS and WV73 reduced347

the errors by a similar amount, except above 6 km, where the WV73 experiment shows a larger error reduction. The348

WV62 experiment, however, was worse than WV73 and increased the error at altitudes between one and three349

kilometres.350

Somewhat surprisingly, the vertical distribution of cloud water (WRF’s QCLOUD variable) was not generally im‐351

proved (figure 13c). Most layers show increased errors compared to the noDA experiment. Only the layer with the352

highest errors shows slightly reduced errors in the REFL experiment, that assimilated radar observations. Note that353

radar is mostly blind to cloud droplets. The largest error increase occurred for WV62, the least for REFL. Although354

the vertically resolved MAE of cloud water did not improve, the FSS and RMSE evaluation (figure 11,10) showed that355

forecasts of cloudiness were improved overall, when the vertical distribution of hydrometeors was not considered.356

The vertical distribution of cloud ice (QICE) improved between 10 and 12 km. Reductions reached 0.01 g/kg357

(40%) in the experiments assimilating 6.2 or 7.3 µm, but were less in the VIS experiment. Below 10 km the errors358

were increased.359

In summary, there are overall improvements in temperature and water vapor, except for low‐level water vapour360

in the experiment assimilating 6.2 µm BT. The vertical distribution of clouds was not improved despite the sensitivity361

of the observations to clouds and despite the improvements in terms of cloudiness revealed in the last section. Our362

explanation is that the assimilation improves the model equivalents but does not necessarily improve the vertical363

distribution of model hydrometeors as the observations are not very sensitive to the vertical distribution of hydrom‐364
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eteors. This means it is not necessary for the cloud to be at the correct height in order to reproduce observations.365

Instead, existing ensemble perturbations will be scaled up or down depending on the ensemble correlation between366

state variable and the observation. This deficiency, however, may be overcome to some extent whenmultiple satellite367

channels with different sensitivities are assimilated together.368

3.3 | Sensitivity tests369

Why radar outperforms satellite observations370

A prominent detail in the results is that radar observations have an advantage over satellite observations in the random371

case, but not so much in the warm‐bubble case. Given the differences between the cases, we hypothesized that the372

advantage of radar observations comes from their vertical resolution. To test this hypothesis, we computed a two‐373

dimensional grid of radar observations similar to the two‐dimensional satellite observations by projecting the three‐374

dimensional radar observations onto a two‐dimensional grid. The projection used the maximum reflectivity of each375

grid column, asmaximum column reflectivity is a common tool for operational forecasters and sometimes also used for376

data assimilation. The result of assimilating this two‐dimensional radar (figure 14) shows a forecast which is relatively377

similar to experiments which assimilated satellite observations, indicating that vertically resolved observations are378

indeed crucial in this case in order to reach a high forecast skill.379

Assigned observation error variance380

We tested a range of constant values (table 1) for the assigned observation error in order to find the observation381

errors which performed best in terms of the FSS. Figure 15 shows the sensitivity of the FSS (of light precipitation) for382

the increased assigned observation errors. Increasing the observation error never improved the results. Assigning the383

measurement error as observation error gave best results for all observation types. As there were seven times more384

radar observations than satellite observations due to its vertical resolution, radar had a higher combined weight in the385

assimilation. Nevertheless, assigning less weight (increased error), did not lead to improved forecasts. Doubling the386

assigned error removed its advantage compared to other experiments and lead to a forecast impact that was mostly387

between the experimentsWV73 and VIS, yet still higher than theWV62 experiment after 16.30 UTC. Cloud‐affected388

BTs of 7.3 µm show much larger first guess deviations than in the 6.2 µm channel, a possible reason why assigning389

2 K lead to better forecasts after 3 hours lead time.390

Dynamic observation errors391

For infrared satellite observations, the first‐guess departures increase with the occurrence of clouds, mainly due to392

misplacement of clouds (Harnisch et al., 2016). Following (Geer and Bauer, 2011), this error can be considered to be393

part of the observation error. Thus, assigning constant observation errors can be sub‐optimal, especially for 7.3 µm394

BTwhich shows the largest first‐guess departures. We tested the dynamic observation error model of (Harnisch et al.,395

2016) but found the results to be substantially worse than using constant observation errors. This is in contrast to396

(Schröttle et al., 2020) who successfully applied the dynamic model for the 6.2 µm channel, but used the ICONmodel397

and an LETKF assimilation system instead of theWRFmodel with the EAKF in our study. A possible explanationmight398

be underestimated ensemble spread for cloudy observations. To investigate this further, we compare the ensemble399

spread to the RMSE of the ensemble mean forecast for each observation type in figure 16. It seems that the prior400

error variance was well estimated in the warm‐bubble case for all observation types (figure 16a). In the ”random”401

case (figure 16b) however, the spread was underestimated, probably due to an underestimated spread for cloudy402

observations, as can be seen by the spread‐error relationship for the subset of cloudy observations in figure 16c. This403
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(c)Model variable cloud water mixing ratio
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(d)Model variable cloud ice mixing ratio

F IGURE 13 Vertical profiles for model variables temperature (top left), vapor mixing ratio (top right), cloud water
and ice mixing ratio (bottom left and right). Each panel shows the MAE of the noDA experiment (left), the MAE
reduction in the experiment (center) and the relative MAE reduction in % of the noDA MAE (right). Negative values
stand for lower errors in the assimilation experiments compared to noDA. The right panel shows the change in MAE,
relative to the prior MAE. The error was evaluated at 14:05 in the ”random” case, as mean (over 961 observed
atmospheric columns) absolute error of the ensemble mean forecast. Dots indicate the horizontal average, shading
indicates the 95% confidence interval over 961 atmospheric columns in which observations were taken. The
increments of neighboring observations were overlapping and thus not independent.
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F IGURE 14 Fraction skill score of forecasts assimilating 2‐dimensional radar reflectivity instead of
3‐dimensional radar reflectivity in the random case. Assimilation time frame is shown in grey shade.

could explain why the experiments with the dynamic observation error model performed worse than the constant404

error assimilation, since the underestimated spread together with the inflated observation error lead to negligible405

weights for cloudy observations. Nevertheless it should be noted that a dynamic observation error model refined406

for the scenarios investigated in our study and the WRF EAKF system may still lead to higher impact of infrared407

observations than in our comparison.408

4 | CONCLUSIONS409

This study presents the first direct comparison of the assimilation of visible and infrared satellite observations to that410

of radar reflectivity observations and the first study assimilating visible observations using the ensemble adjustment411

Kalman filter (EAKF) on the convective scale. We assimilated synthetic observations of 0.6µm visible reflectance412

as well as 6.2 and 7.3µm infrared brightness temperature and radar reflectivity in an idealized perfect‐model OSSE.413

The forecast impact was evaluated in two weather situations. Firstly, a ”supercell” case in which a warm bubble of414

30 km diameter initiated a single supercell storm and secondly a case where multiple deep convective cells at different415

stages are scattered throughout the domain. The periodic boundary domain of 400 x 400 km size was simulated using416

a 2 km resolutionWRFmodel, which was used in identical configuration for the forecast as well as the nature run. The417

observations were assimilated five times (every 15min) within one hour, during the growth and consecutive mature418

stage of convection.419
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BT or (c) radar reflectivity. Assimilation time frame is shown in grey shade.

Main findings420

1)The EAKF is able to draw crucial information from satellite observations despite the nonlinear observation operators421

and their assimilation substantially improves the subsequent forecasts of precipitation and cloudiness substantially.422

Furthermore, we demonstrate that visible satellite observations can be considerably more beneficial than previously423

reported by (Schröttle et al., 2020), reaching an impact of 88% of the impact of three‐dimensional radar observations424

and also outperforming the assimilation of thermal infrared satellite observations.425

426

2) Visible and infrared satellite observations can have an impact on forecasts of convective precipitation that427

is comparable to the impact of radar reflectivity observations. Given favorable conditions, i.e. when the stage of428

convection is correct in the prior and only the location is uncertain (”warm‐bubble” case), the assimilation of satel‐429

lite observations strongly improved the precipitation forecasts: visible observations lead to 88% of the radar impact,430

while the vapor‐sensitive channels 6.2 and 7.3 µm lead to 74‐76% of the radar impact. In more difficult conditions,431

i.e. randomly located storms at different stages (”random” case), the relative impact was lower but still reached 50%432

for the visible observations, 20% for 6.2 µm BT and 79% for 7.3 µm BT. Assimilating two‐dimensional (max‐column)433

radar reflectivity yielded 64% of the impact of three‐dimensional radar reflectivity assimilation.434

435

3) The differences between the simulated cases suggest that the impact of visible reflectance and 6.2 µm BT436

observations is highest when the uncertainty about the vertical structure of clouds is lowest. The vertical structure437

of clouds can not be retrieved from a single channel and thus is a weak spot for satellite observations. Comparing the438
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F IGURE 16 Spread error relationship for a) the warm‐bubble case, b) the random case and c) the random case,
considering only cloudy observations defined by visible reflectance > 0.6, BT < 240 K, radar reflectivity > 20 dBz.

Spread2 is the prior ensemble variance, averaged over observations. RMSE is √⟨(H(xb) − H(xnat))2⟩ where xb is the
prior, xnat nature and ⟨⋅⟩ the average over observations. In order to use one axis for different observation types, we
re‐scaled by dividing by the maximum RMSE for each observation type.

”warm‐bubble” and the ”random” case, we noticed that in one case, the missing vertical resolution of the assimilated439

satellite observations did not seem to have a detrimental effect on subsequent forecasts. We hypothesized that the440

uncertainty in the vertical distribution of clouds is responsible for the reduced impact of satellite observations in the441

”random” case. Experiments which only assimilated 2D radar observations and withheld the vertical resolution of the442

radar data (section 3.3) supported that hypothesis. This result is in agreement with (Sawada et al., 2019), who found443

improved forecasts of isolated cells in case of weak large‐scale forcing by assimilating observations of 7.3 µm infrared444

BT.445

Additional remarks446

In order to generalize our results for operational numerical weather prediction, additional error sources need to be447

considered which have not been included in this study: systematic model and operator errors (biases), representa‐448

tiveness errors as well as correlated observation errors. While (Errico and Privé, 2018) argued for the simulation of449

as many error sources as possible, we refrained from that to isolate particular aspects of assimilating cloud‐affected450

satellite observations (e.g. nonlinearity) and better understand their potential impact on convective‐scale forecasts451

in the absence of all complexities of a real system. (Zhang et al., 2016) suggests that the impact derived from a452

perfect‐model OSSE may deviate from that in real systems, but the results are still very informative in a qualitative453

sense. The impact of the observations in operational systems is likely lower in absolute terms due to additional error454

sources that e.g. require an inflation of observation errors. For this reason, our study focuses on the impact of the455

observations relative to more commonly assimilated radar observations, which can be assumed to be less affected by456

the simplifications of the setup mentioned above.457

The observation impact diagnosed from an OSSE depends on the choice of observation error and ensemble458

spread. In addition to a reasonable choice of observation error (section 2.4) and spread (section 2.3), the statistics of459

first‐guess departures support our OSSE setup. The standard deviation of first‐guess departures (to single members460

and not the ensemble mean) was 4.5 K for the 6.2 µm channel, 9.1 K for the 7.3 µm channel, and 0.22 for the461
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visible channel at 13:30. Compared to (Harnisch et al., 2016), these values indicate that our setup features realistic462

departures and a case that is an even more difficult situation for numerical weather prediction.463

Outlook464

Our results reveal that the prediction of deep convection could strongly benefit from the assimilation of visible and465

infrared satellite observations. While the assimilation of infrared observations has been investigated previously, only466

very few studies investigated the assimilation of visible observations up to now. Furthermore, radar observations are467

not available in many parts of the world or they are of limited quality, e.g. due to orography that can obscure parts of468

the precipitation.469

Despite recent progress in the effective assimilation of satellite observations, numerous open challenges still470

need to be addressed. The nonlinearity and non‐Gaussianity of the observations and the model call for improved471

algorithms that allow non‐Gaussian distributions, e.g., as proposed by (Anderson, 2010, 2020, 2022), and take obser‐472

vation operator nonlinearity into account. Furthermore, the vertical resolution is a weak spot of visible and infrared473

satellite observations. While different channels can provide information about different atmospheric levels, research474

on this is lacking, despite the potential of acquiring vertically resolved information on different hydrometeor types475

through the combination of spectral channels. For example, while the 6.2 µm channel is mostly sensitive to upper476

tropospheric water vapor, the 7.3 µm channel sees further down into the lower troposphere. Both channels are sen‐477

sitive to thin ice clouds, which makes them blind to clouds below. The 0.6 µm visible channel can be crucial here, as478

thin ice clouds are mostly transparent at this wavelength (Scheck et al., 2020). Lastly, cloud height information from479

window channels could be used to avoid assigning clouds to the wrong levels in the model.480

Data & Software481

Experiments were conducted using the python package available at github.com/lkugler/DART-WRF. It allows to482

define experiment workflows using DART and WRF and contains routines to generate DART observation sequence483

files, a python‐pandas interface to analyze observation sequence files. DARTwas used in version 10.5.3 with a slightly484

modified RTTOV interface with constant radii for water droplets and ice crystals as mentioned in section 2.4. During485

the course of this study, we improved the RTTOV interface in DART by removing a bug which wrongly flipped cloud486

variables vertically before DART v10.1.0. We thank L.Scheck for FSS verification code based on (Faggian et al., 2015)487

and T.Necker and L.Wolfgruber for a bug‐fix for odd window sizes. Other tools: RTTOV v13.3, WRF v4.3. Python488

packages: xarray (Hoyer and Hamman, 2017), metpy, matplotlib, dask, proplot. Supplementary data and figures are489

published at https://doi.org/10.5281/zenodo.7840304 (Kugler, 2023).490
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