
Flash flood predictions over the Eastern Mediterranean using artificial intelligence 
techniques with precipitable water vapor, pressure, and lightning data

Yuval Reuveni1,2, Saed Asaly3, and Lee-Ad Gottlieb3

1Department of Physics, Ariel University, Ariel, Israel
2Eastern R&D Center, Ariel University, Ariel, Israel
3Department of Computer Sciences, Ariel University, Ariel, Israel.

Abstract
Here, we present a novel approach for improving flash flood predictions in the EM region
using Support Vector Machines (SVMs) with a combination of precipitable water vapor
(PWV) data, derived from ground-based global navigation satellite system (GNSS)
receivers, along with surface pressure measurements, and nearby lightning occurrence
data to predict flash floods in an arid region of the EM. The study found that integrating
nearby lightning data with the other variables significantly improved the accuracy of
flash flood prediction compared to using only PWV and surface pressure measurements.
The results of the SVM model were validated using observed flash flood events, and the
model was found to have a high predictive accuracy along with other high skill score
metrics performances for the test set.
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Conclusions:

Data sources:
• Precipitable water vapor (PWV) derived from nine GNSS 

ground-based stations.
• Long-term hourly surface pressure measurements.
• Hydrometric station data which include the flood occurrence 

date times along with water level and water discharges for 
all recorded events.

• Lightning occurrence data from the WorldWide Lightning 
Location Network (WWLLN) and the Israel Lightning 
Detection Network (ILDN)
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Methodology I:
Ziskin and Reuveni [2022]

Score metrics:

Mean test scores for the SVM, RF, and MLP classifiers (row) and for 
each metric (column):

Feature importance for the PWV, surface pressure, and DoY features as run 
together in the RF classifier:

Grid search for 
hyperparameter range:

Best hyperparameter using 
cross validation (CR):

Methodology II:

Mean SHAP values:

Mean ROC curves:

Extracting features related to nearby lightning 
activity for each flash flood:

Constructing 24-hour vectors by integrating the number of 
lightnings which were nearby the GNSS and hydrometer station 

at a temporal resolution of 1-hour:

Cross validation performance 
with 5 subsets of the data

using a randomized stratified 
sampling

approach, allowing each 
iteration to randomly pick 

testing sets while still taking 
into account all the
9 stations (groups):

Bayesian optimization of the SVM model:
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Results:
Skill score metrics compression: 

current SVM Vs. Ziskin and Reuveni
Skill score metrics compression: current 

SVM Vs. Panahi et al. and Bui et al.

The confusion matrix for 
the SVM model results 
extracted from the 

training set (left), and
the test set (right):

ROC model curve obtained 
during the hyperparameters 

optimization process:

Our results demonstrated that incorporating nearby lightning
activity as an augmented feature, improved the performance
of our model in capturing the correlation between
atmospheric electricity characteristics and flash flood
occurrence. This enhancement was evident in our model’s
precision and F1 metrics’ performance on an imbalanced
testing set, thus contributing to the development of a more
accurate and reliable flash flood classification system.
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Abstract
Here, we present a novel approach for improving flash flood predictions in the EM region
using Support Vector Machines (SVMs) with a combination of precipitable water vapor
(PWV) data, derived from ground-based global navigation satellite system (GNSS)
receivers, along with surface pressure measurements, and nearby lightning occurrence
data to predict flash floods in an arid region of the EM. The study found that integrating
nearby lightning data with the other variables significantly improved the accuracy of
flash flood prediction compared to using only PWV and surface pressure measurements.
The results of the SVM model were validated using observed flash flood events, and the
model was found to have a high predictive accuracy along with other high skill score
metrics performances for the test set.

Background:
• A flash flood is a rapid and intense response of a drainage area to heavy rainfall 

events.
• The spatiotemporal distribution of rainfall is the most important factor (beside soil 

saturation and surface cover) for flash flood generation in the arid and semi-arid 
parts of the EM.

• A possible precursor to heavy rainfall events is the rise in tropospheric water vapor 
amount, which can be remotely sensed using ground-based global navigation satellite 
system (GNSS) stations.

• Heavy rainfall can lead to flood events and are often accompanied by an increase in 
nearby lightning activity.

Previuos work I:
• Ziskin and Reuveni (2022), examined 3 different machine learning methods, Support 

Vector Machine (SVM), Random Forest (RF), and Multilayered Perceptron (MLP), for 
binary classification task, which predicated whether a flash flood will occur given 24 
hours of PWV, surface pressure, and a DOY feature:  

• Using GNSS ground-based meteorology to monitor PWV before, during, and after 
heavy rainfall events. The PWV dataset used in this work has been derived from the 
SOI-APN GNSS ground receivers. We processed the daily RINEX files downloaded 
from the SOPAC/Garner GPS archive (http://garner.ucsd.edu/) using NASA’s JPL 
GipsyX software. The daily RINEX processing is done using NASA’s JPL GipsyX software 
via the PPP solution. From the position solution of the receiver, the ZTD can be 
extracted. We use a minimum cutoff elevation angle of 15°, GMF for the tropospheric 
model and ocean loading for all of the stations. 

Previuos work II:
• The full parameter tree used in this work is available at the Github.com repository 

(https://github.com/ZiskinZiv/PW_from_GPS/blob/master/my_trees/ISROcnld/ISROcnld_0.tree). The processing has resulted in ZWD 
that was translated into PWV using the following formula: 𝑷𝑾𝑽 = ∏×𝒁𝑾𝑫. ∏ is the dimensionless constant of proportionality and 
is mainly the function of the atmospheric mean temperature. We used the Israeli Meteorological Service’s (IMS) automated stations 
and radiosonde measurements in order to estimate the atmospheric mean temperature, Tm, relationship to the surface temperature, 
Ts , in the study area: Tm = 0.69Ts+82.

(Left) PWV data availability for each of the SOI-APN 
stations in the southern part of Israel. The flash 

floods’ unique events are plotted with x’s
under each nearest GNSS station. (Right) SOI-APN 

stations (black squares), Bet-Dagan IMS station (black 
x), and the hydrometric stations (pink) plotted on
a height-filled contour map of the study area.

• The final step in the PWV 
dataset preparation is the 
removal of the mean diurnal and 
annual variations. For each 
station, the resulting time series, 
which we call PWV anomalies, 
contains only the inter-daily 
variability:

PWV annual and diurnal 
climatology for (Top) DSEA, 
(Middle) RAMO, and (Bottom) 
ELAT stations. The diurnal 

annual mean is plotted under 
each filled contour panel

https://github.com/ZiskinZiv/PW_from_GPS/blob/master/my_trees/ISROcnld/ISROcnld_0.tree
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Previuos work II:
• The floods database has been received from the Israeli Water Authority (IWA, https://www.gov.il/en/departments/water_authority). The IWA manages and processes the measured data received from the hydrometric stations 

across Israel, which include the flood occurrence date times along with water level and water discharges for all recorded events. For each GNSS station, we searched for all available hydrometric stations located within a 15-
km radius distance from the GNSS station location. We then selected the station with the highest amount of flood events, which we had the PWV data for, at least 24 h prior to the flood. Thus, we obtained an initial number 
of 151 flood events co-located with the respective GNSS stations.

PWV at Yerucham (YRCM) GNSS station superimposed on the water discharge (flow) at the Mamsheet
hydrometric station located 12 km east of YRCM on April 24–27, 2018. Note the three major flash 

flood events on the 25th, the 26th, and the 27th. The PWV more than doubled during the second half 
of the 24th as a low-pressure system provided large quantities of moisture to the region

• In order to detect the effect that PWV has on flood events, we averaged the PWV 
anomalies six days prior and four days after a flood event. We repeated this step for 
all the GNSS stations and also averaged all the PWV anomalies stationwise:

(Top) PWV mean anomalies heatmap for the SOI-APN stations, 
presented in the map, with respect to a mean flood event. The 

average was calculated for various flood events (the rightmost column 
in Table II) per each station, from a total number of 151 events. 

(Bottom) Averaged PWV anomalies, along with its variability (indicated 
by the shaded gray strip), for the nine GNSS stations with respect to 
a ten-day time window around all the flood events (six days before 

and four days after the events, where the black dashed line is 
positioned at t = 0).

https://www.gov.il/en/departments/water_authority
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Previuos work II:
• Since our main approach to flash flood prediction is mostly data-driven, we decided to add more features with a goal of increasing our model’s performance. In 

particular, we added long-term hourly surface pressure measurements from the Bet-Dagan IMS station (see map) and removed the diurnal and long-term 
climatology in the same manner as we did with the PWV data.

Station averaged pressure anomalies with respect to a mean flood
event (black dashed line at x = 0). As expected, the pressure drops before 

a flood event, representing a low-pressure system that produces 
precipitation events. The minimum pressure values are found about 6–8 h 
prior to a flood event. However, the variability is quite higher than the 

PWV dataset.

Number of flood events per month in the arid climate of southern
Israel for events which we have PWV data for. It is clear that the

most frequent month is January, with 30 events, while February–April 
and October–December have a mean of 11 events. May, June, and 
September have only a few events, while July and August have no 

flood events, as expected.

• We also added the Day of Year (DoY) information as a feature to our PWV 
and surface pressure features:
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Previuos work II:

ML Methodology:
• Preprocessing: Our data-driven approach to flood prediction considers a supervised learning task using binary classification. In particular, we ask the following 

question: given 24 h of PWV anomalies, surface pressure anomalies, and DoY, will there be a flood event in the following hour? When termed this way, we 
regard the PWV, surface pressure, and DoY data as features and the flood/nonflood events datetimes as the samples. Therefore, our preprocessing of the 
samples and features is given as follows. 
- First, we removed from the flood database close events that are overlapping within a 24-h window. The idea was to find unique flood events as much as  

possible, without losing too many samples. This step leaves us with 107 flood events from an original 151 GNSS co-located events. The flood events are the 
positive class in our classification task. We then continued with the positive features, i.e., PWV and surface pressure that are resampled to hourly means. 

Station Main ML methodology block diagram. The features are the PWV,
surface pressure, and Doy, where the target is the flash floods datetimes.

Preprocesing involves standardizing the PWV and surface pressure measurements 
(Standardized anomalies are the removal of the long-term monthly mean from a 
time series and dividing it by the long-term monthly standard deviation), hourly 
resampling them, and colocating the GNSS and hydrometric stations. Finally, 24-h 

sequences are generated with class balancing. In the learning process, three 
general types of ML classifier models are optimized using Cross Validation: MLP, 
SVM, and RF. The final output of each model is whether or not a flash flood will 

occur in the 25th hour.

- We then co-located each GNSS and hydrometric station and found 24 data points of
PWV prior to each flood event. If half or more of the PWV data was missing, we
dropped this event from our analysis. We used cubic interpolation to fill in the missing
data points otherwise. We repeated this process with the surface pressure data, and
however, in this case, we had only one surface pressure station (Bet Dagan) with the
necessary data period and resolution. This step leaves us with 49 features (48 for
PWV and pressure along with one for DoY). As for the negative class, we randomly
searched for 24 h of PWV and pressure, which do not overlap the positive features,
and we repeat this step only once for each flood event in each station, thus ensuring
that the binary classification task is balanced. Our resulting matrix of features and
samples is 214 (107 for each class) by 49. Finally, since two of our classifiers are
sensitive to feature normalization, we use the standardized version of the PWV and
surface pressure anomalies for all the classifiers (Standardized anomalies are the
removal of the long-term monthly mean from a time series and dividing it by the long-
term monthly standard deviation).

- Our main goal is to use supervised learning classifiers in order to predict flash floods using PWV as the main input. 
Accordingly, we chose three common types of ML models: SVM, RF, and multilayered perceptron (MLP). All the models 
were implemented using the Scikit-Learn Python package. The SVM classifier utilizes a linear hyperplane to separate 
each sample class. Using the kernel trick, the hyperplane is transformed into a higher dimension, which gives the SVM 
more flexibility; however, the cost is a larger generalization error. The RF classifier is a metaclassifier, which uses a 
number of decision trees on randomized selections of subset of features. The final output is produced by averaging all 
the individual decision tree classifiers. The MLP classifier is a neural network algorithm, which includes multilayered 
nodes with weights. Typically, the network architecture includes an input layer, any number of hidden layer, and an 
output layer where each layer’s nodes are connected via activation functions (a so-called feedforward propagation). 
During the learning process, the weights are reevaluated using the backpropagation iterative algorithm [54] in order to 
decrease the cost function.
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Previuos work II:

ML Methodology:
• score Metrics: We use six different metrics to evaluate the models’ performance [55]. These metrics are: precision, recall, F1, accuracy, Heidke skill score (HSS),

and true skill statistics (TSS). These metrics are a combination of the four possible outcomes of our classifier.
1) True positive (TP) is the correct prediction of a flood event.
2) True negative (TN) is the correct prediction of a no-flood situation.
3) False positive (FP or type I error or false alarm) is when the classifier predicts a flood but there was not any.
4) False negative (FN or type II error or simply miss) is when the classifier does not predict a flood but a flood occurs, hence the miss.

• The fallout or false positive rate (FPR), measures the probability of false alarm (FPs). The precision or positive predictive value measures the ability of the
classifier not to produce false alarms. The recall also known as true positive rate (TPR), sensitivity, or hit rate measures how successful the classifier is in
predicting the positive class without missing (FN). Precision and recall are always at tension with each other, where improving recall reduces the precision and
vice versa. One way of dealing with this issue is to use the F1 score, which is the harmonic mean of the precision and recall. The accuracy score quantifies how
well a classification test correctly identifies or excludes a condition (i.e., whether it is a TP or TN). The TSS compares the probability of the true prediction, to
the probability of false prediction or simply recall minus the fallout. Thus, a TSS no skill score is 0, while −1 means that the prediction labels should be
reversed. The HSS, which is often used in weather and solar events prediction, quantifies the fractional improvement of the prediction accuracy relative to some
set of control or reference predictions. It is normalized by the total range of possible improvement over the standard (i.e., it can be compared with different
datasets). A perfect HSS score is 1, and a no skill score is 0, while an infinitely negative score is possible, suggesting that the prediction is worse than the
reference prediction. Another widely used performance measurement visualization method is the receiver operating characteristics (ROC) curve, which illustrates
the diagnostic ability of a binary classifier as its classification threshold is varied. The ROC curve is actually the recall or TPR plotted versus the fallout or FPR
where, ideally, the TPR is maximized, while the FPR is minimized. The area under the ROC curve (ROC-AUC) can be used as a score metric where a no skill
score is 0.5, while a perfect score is 1.

• k-fold nested cross-validation: The models were tested with a technique called k-fold nested cross-validation, which is a technique used to evaluate the 
performance of machine learning models by dividing a dataset into multiple subsets, or "folds," and iteratively training and testing the model on different 
combinations of these folds. In K-fold Nested Cross-Validation, the process is repeated multiple times, with each iteration splitting the data into different folds 
and using different subsets of the data for training and testing. This approach is used to help reduce overfitting and ensure that the model is not biased 
towards a particular subset of the data.
The "nested" aspect of this technique refers to the fact that it involves two levels of cross-validation. The outer loop of the process uses K-fold cross-validation 
to split the data into training and testing sets, while the inner loop is used to perform hyperparameter tuning on the model. The hyperparameter optimization   
process has been done using a technique called grid-search optimization, which is basically a technique used to find the best set of hyperparameters for a   
machine learning model. Hyperparameters are values that are set before training the model and can affect how well the model performs on new data.

In Grid Search Optimization, a range of values is specified for each hyperparameter, and the model is trained and evaluated on each combination of these values. 
This is done by creating a "grid" of all possible hyperparameter values and evaluating the model on each point on the grid.

Score metrics:
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Previuos work II:

ML Methodology:
• Permutation Test: We also subject our classifiers to the permutation test for labeled data. This test, which has been extensively used in the field of 

computational biology, aims to address the following question: does the classifier detect a significant class structure, i.e., a real connection between the data and 
the class labels? We use a standard fivefold CV to estimate a null distribution by permuting the labels in the data and produce a “true” score without the 
permutations. The experimental p-value from these tests is calculated as follows: p−value = (S + 1)/(npermutations + 1), where S is the number of permutations 
whose score the “true” score. Since ideally, S should be 0, the best possible p-value is 1/(npermutations + 1), and since we use 100 permutations, it is 1/101 = 
0.0099, while the worst p-value is when S = npermutations, i.e., p-value = 1.0. 

• Imbalanced Dataset Test: Since flash floods are very rare events, we thus require a more realistic scenario for testing our classifier, which is trained with a 
balanced dataset. Therefore, we need to generate more negative samples from the PWV/pressure time series. As a rough estimate, we divide the number of the 
total flash flood events (≈100) with the total number of days of the largest time series (RAMO: ≈ 7500 days or ≈ 20.5 years) and reach a ratio of 1 flash flood 
event in 75 days or 1.3% positive ratio. Thus, we need to produce negative samples for each station that is complete (24 h) and do not coincide with a positive 
event. Unfortunately, with these constraints, we were able to find only 25 negative samples per a positive one or 4% positive ratio that is three times more 
frequent than the rough estimate. Nevertheless, we can use a specific data split in order to overcome this obstacle. The testing procedure for the imbalanced 
dataset is given as follows:
1) For each ML model, we train our classifiers with 66.66% of the balanced training set (71 positives and 71 negatives).
2) We evaluate the classifiers with the remaining 33.33% of the balanced dataset concatenated with all the remaining negative samples produced (36 positives 

and 2639 negatives) to receive a positive ratio of 1:73.3 or 1.36%, which is very close to our estimate.
3) We repeat the evaluation for each of the score metrics.

Grid search for hyperparameter range:

Best hyperparameter using cross validation (CR):

Mean test scores for the SVM, RF, and MLP 
classifiers (row) and for each metric (column). 
The feature groups consist of DoY (purple), 

surface
pressure (brown), PWV (blue), surface pressure 

and DoY (red), PWV and surface pressure 
(orange), and all three together (green). The 

mean scores are
indicated to the top left of each bar and the SD 
of five data splits is represented by the error 

bar length.

Imbalanced dataset test 
scores for the SVM, RF, 

and MLP classifiers 
(row) and for each 
metric (column).
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Current work:

ML Methodology:
• In this study, we further enhance the models by incorporating lightning data as an additional feature. Lightning often precedes heavy rainfall, which can cause

flash floods. We extracted relevant features from our dataset by creating 24-hour lighting vectors for each flood event, integrating the number of lightning
strikes within a 10 km radius around each of the nine GNSS station at 1-hour time windows.

• We trained an SVM model using a standard k-fold cross-validation approach due to the limited amount of data available. As with limited data, the standard k-fold
cross validation approach is a suitable choice as it provides good balance between computational cost and the ability to obtain meaningful results, while still
allowing for an evaluation of the model's generalization performance.

• A Bayesian optimization was used to choose the optimal hyperparameters for our SVM model, which has been shown to be more efficient and effective than 
grid search in many cases, particularly for complex, high-dimensional models such as SVM.

• Our results showed that the model achieved impressive performance across multiple score metrics calculated from the imbalanced testing set (ratio of 56 quiet
days to 1 flood event in the testing set), including an accuracy of 0.9913, F1 score of 0.7917, HSS score of 0.7875, precision of 0.6786, recall of 0.95, and TSS
score of 0.9421.

Comparison of skill score metrics for flash flood event 
prediction between the current SVM model and Ziv 

and Reuveni work. The results show an improvement in 
the accuracy of the

current model in predicting flash flood events and 
non-floods, as indicated by the higher values in most 

skill scores

Imbalanced 5-Fold Cross Validation Results. The diagram 
illustrates the performance of the cross

validation process with 5 subsets of the data, obtained 
through a randomized stratified sampling

approach, allowing each iteration to randomly pick testing 
sets while still taking into account all the

9 stations (groups)

ROC model curve obtained 
during the hyperparameters 

optimization process

The confusion matrix for the SVM model results 
extracted from the training set (left), and the test 

set (right).


