Snow depth derived from Sentinel-1 compared to in-situ observations in northern Finland

Adriano Lemos^{1*} and Aku Riihelä¹ ¹Finnish Meteorological Institute *adriano.lemos@fmi.fi

IATIETEEN LAITOS TEOROLOGISKA INSTITUTET NISH METEOROLOGICAL INSTITUTE

Introduction:

Why to explore seasonal snow in northern Finland?

 Snow variations plays an important role in the northern regions, providing:

Water resources:

Hydropower generation

- Snow depth can exceed 1 m, impacting:
- Local agriculture;
- Vegetation;
- Tourism;
- Recreational activities

Data and methodology used:

• σ°_{vh} and σ°_{vv}

Average snow depth estimates from Sentinel-1

Figure 1: Average snow depth estimated from Sentinel-1 of the seasons 2019-2022 (between October and March). Black triangles indicate the automatic weather stations locations; Inari Nellim (IN), Kaamanen (IK), and Angeli Lintupuoliselkä (IA), respectively. The inset figure shows the study region in Finland.

MATIETEEN LAITOS STIOWS UN ETEOROLOGISKA INSTITUTET NNISH METEOROLOGICAL INSTITUTE

Average snow depth estimates from Sentinel-1

Figure 2: Average snow depth estimated from Sentinel-1 during the seasons of 2019-2020 (a), 2020-2021 (b), and 2021-2022 (c), respectively.

Maximum snow depth estimates from Sentinel-1

Figure 3: Maximum snow depth (March average) estimated from Sentinel-1 for each season of 2019-2020 (a), 2020-2021 (b), and 2021-2022 (c), respectively.

In Situ dataset vs S1

Datasets comparison

Figure 5: In situ measurements compared to Sentinel-1 estimative. Different colours represent the different automatic weather stations, and solid line represents linear regression for the entire dataset.

Datasets comparison

Figure 6: In situ measurements compared to Sentinel-1 estimative. Different colours represent different years, and solid lines represent linear regression for each year.

Snow depth derived from Sentinel-1 compared to in-situ observations in northern Finland

Adriano Lemos^{1*} and Aku Riihelä¹ ¹Finnish Meteorological Institute *adriano.lemos@fmi.fi

ATIETEEN LAITOS TEOROLOGISKA INSTITUTET NISH METEOROLOGICAL INSTITUTE

In Situ dataset vs S1

Snow depth (S1)