

Development of a global and dynamic map of wetland and inundated areas based on microwave remote sensing product (GIEMS-2) over 1992-2020

EGU, 19 of April 2024

Presented by Juliette Bernard^{1,2} (juliette.bernard@obspm.fr) contribution from Catherine Prigent^{1,3}, Marielle Saunois², Carlos Jimenez³, Frederic Frappart⁴, Cassandra Normandin⁴, Pierre Zeiger⁵, Etienne Fluet-Chouinard⁶, Bernhard Lehner⁷, Elodie Salmon², Yi Xi², Shushi Peng⁸, Philippe Ciais², and Zhen Zhang⁹

¹LERMA, Paris Observatory, CNRS, PSL, Paris, France

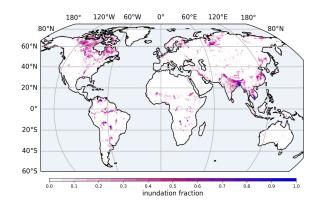
²Laboratoire des Sciences du Climat et de l'Environnement, France

³Estellus, Paris, France

⁴ISPA, INRAE/Bordeaux Science Agro, Villenave-d'Ornon, France

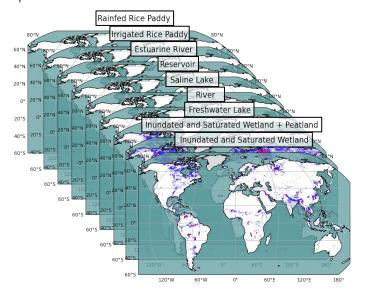
⁵Institut des Géosciences de l'Environnement (IGE), Grenoble, France

⁶Pacific Northwest National Laboratory, Richland, WA, USA


⁷Department of Geography, McGill University, Montreal, QC H3A 0B9, Canada

⁸College of Urban and Environmental Sciences, Peking University, Beijing 100871, China ⁹Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

From surface waters to a methane-centric database


→ GIEMS-2 : Global surface water extent and dynamics estimated from satellite observations (passive microwaves) over 30 years

1. GIEMS-2 surface water evaluation

1992-2020 monthly **inundation fraction** passive microwave remote sensing

2. characterization of these water surfaces development of a database for methane emission modeling

1. GIEMS-2 evaluation

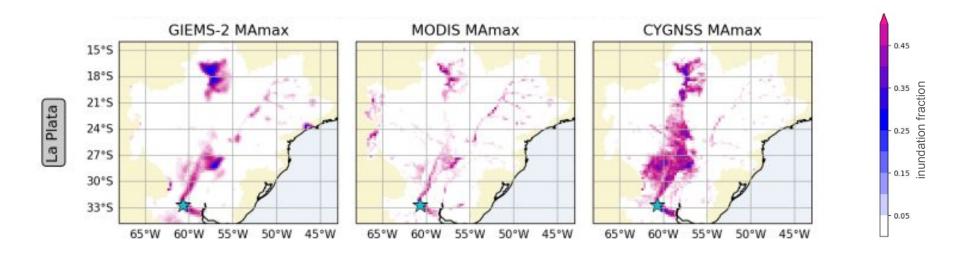
Bernard et al., accepted

Assessing the time variability of GIEMS-2 satellite-derived surface water extent over 30 years

Juliette Bernard ^{1,2*}, Catherine Prigent ^{1,3}, Carlos Jimenez ^{3,1}, Frederic Frappart ⁴, Cassandra Normandin ⁴, Pierre Zeiger ⁵, Yi Xi ², and Shushi Peng ⁶

- → compare GIEMS-2 time series with other satellite products and river gages.
- → 10 basins studied

Table 1. Characteristics of the independent products used for comparison analysis.

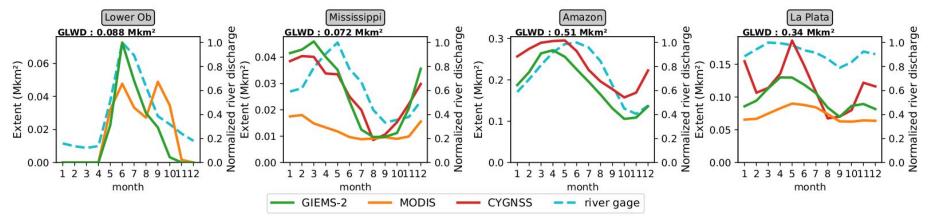

Data product	Wavelength	Spatial coverage	Spatial resolution	Temporal resolution	Available period
GIEMS-2	microwaves, visible, near IR	global	0.25°x0.25°	monthly	1992-2020
MODIS CYGNSS	visible L-band	selected basins 37.5°S to 37.5°N	$\sim 0.0045^{\circ} x 0.0045^{\circ} \\ 0.1^{\circ} x 0.1^{\circ}$	8 days 7 days	2000-2020 Aug 2018-Jul 2019
river gauges	-	point measurements	-	monthly/daily	station dependent

1. GIEMS-2 evaluation - spatial patterns

Bernard et al., accepted

Comparison with satellite products:

MODIS : visible and near IR
CYGNSS : active microwaves


→ spatial correlation of Mean Annual maximum (MAmax) > 0.7 for most of the basins between GIEMS-2 and MODIS & CYGNSS.

1. GIEMS-2 evaluation - seasonality

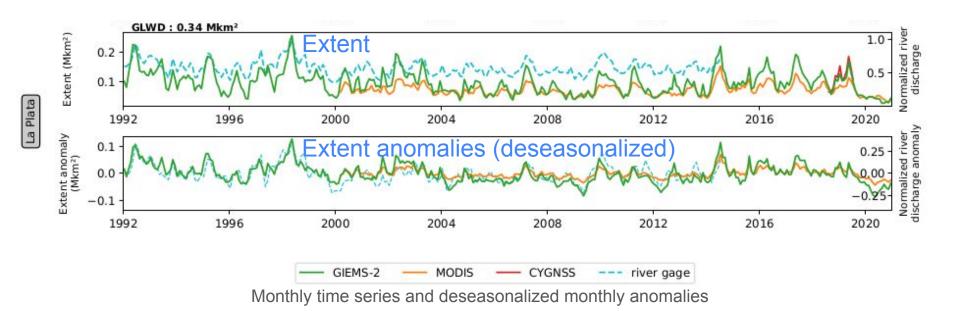
Bernard et al., accepted

Comparison with satellite products:

- MODIS: visible and near IR
- CYGNSS: active microwaves

Mean annual seasonal cycle of the different datasets over selected basins

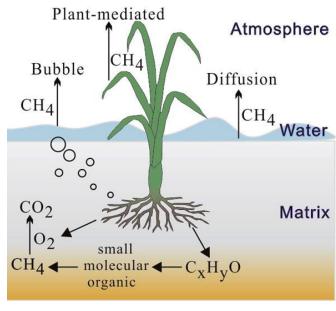
→ high 12-month seasonality correlation between GIEMS-2 and MODIS & CYGNSS & discharges (r>0.75 for most basins)


→ uncertainties in terms of extent

1. GIEMS-2 evaluation - interannuality

Bernard et al., accepted

Comparison with satellite products:


- MODIS: visible and near IR
- CYGNSS : active microwaves

→ correlation coefficient for anomalies > 0.6 for most of the basins between GIEMS-2, MODIS and discharges.

→ reliable interannual variability for both GIEMS-2 and MODIS datasets.

2. GIEMS-MethaneCentric - water surfaces emit methane

Methane-emitting surfaces

- → inundated and saturated wetlands
- → peatlands
- → open freshwater (lakes, ponds, rivers...)
- → rice paddies

Liu et al. 2017

- → waterlogged conditions lead to methane production (a powerful greenhouse gas)
- → need to differentiate these different surfaces

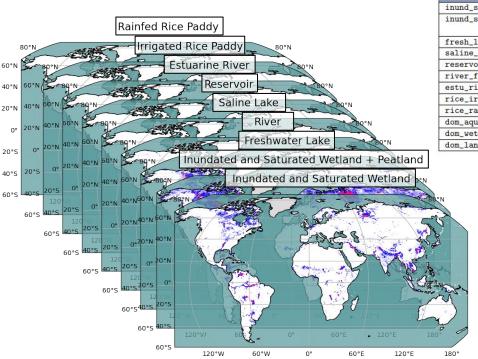
2. GIEMS-MethaneCentric - methodology

Bernard et al., in prep.

GIEMS-2: all surface waters

+ GLWDv2

delta version available on HydroSHEDS website (Lehner et al., in prep)



GIEMS-MethaneCentric: characterization of methane emitting surfaces

2. GIEMS-MethaneCentric - description

Bernard et al., in prep.

GIEMS2-MC variable	Long name	Primary data source	Time resolution
inund_sat_wetland_frac	Inundated and Saturated Wetland	GIEMS-2	monthly
inund_sat_peat_wetland_frac	Inundated and Saturated Wetland + Peatland	GIEMS-2 + GLWDv2	monthly
fresh_lake_frac	Freshwater Lake	GLWDv2	static
saline_lake_frac	Saline Lake	GLWDv2	static
reservoir_frac	Reservoir	GLWDv2	static
river_frac	Large River	GLWDv2	static
estu_river_frac	Large Estuarine River	GLWDv2	static
rice_irri_frac	Irrigated Rice Paddy	MIRCA	12-month seasonality
rice_rainfed_frac	Rainfed Rice Paddy	MIRCA	12-month seasonality
dom_aqua_class	Dominant Aquatic Class	GLWDv2	static
dom_wet_peat_class	Dominant Wetland or Peatland Class	GLWDv2	static
dom_land_cover_class	Dominant Land Cover Class	ESA CCI Land Cover	static

Table 1. Summary of GIEMS-MC variables with corresponding data source and temporal resolution.

- → GIEMS-MC contains dynamic wetland maps (1992-2020) along with other methane emitting surface maps and ecosystem information at 0.25°x0.25°
- → First dynamic harmonized maps for methane emission modeling, can avoid double/mis-counting

Conclusion

- → GIEMS-2 is a **global inundation** dataset with **a realistic interannual variation** over 30 years (*Prigent et al. 2020, Bernard et al., accepted*)
- → from GIEMS-2 and GLWDv2 we derived the first dynamic harmonized dataset for methane modeling GIEMS-MethaneCentric contains dynamic wetland maps (1992-2020) along with other methane emitting surface maps and ecosystem information at 0.25°x0.25° (Bernard et al., in prep)
- → GIEMS-MethaneCentric will be available soon for the community

Thank you for your attention

Presented by Juliette Bernard^{1,2} (juliette.bernard@obspm.fr)

contribution from Catherine Prigent^{1,3}, Marielle Saunois², Carlos Jimenez³, Frederic Frappart⁴, Cassandra Normandin⁴, Pierre Zeiger⁵, Etienne Fluet-Chouinard⁶, Bernhard Lehner⁷, Elodie Salmon², Yi Xi², Shushi Peng⁸, Philippe Ciais², and Zhen Zhang⁹