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Importance of measurement precision for high frequency water isotope data
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1. Introduction to diffusion and deconvolution
• Diffusion smooths out water isotope record from ice cores
• High frequencies can be restored using deconvolution

2. How to recover higher frequencies?
• Higher measurement precision enables higher 

frequencies to be recovered through 
deconvolution

• Want to quantify how much frequency 
information is gained for a given drop in 
measurement noise

4. Visual effect on timeseries
• We simulate timeseries with the same deep ice parameters
• Numerically estimating 𝛼 for a range of 𝜂 gives the same solution as 

Fig. 4, validating our result
• To visualise the effect of measurement noise on deconvolution, we 

deconvolve the timeseries with 𝜂 = 1 and 𝜂 = 100

3. What is gained by reducing measurement noise?
Taking the first RHS term from Eqn. 1 and dividing by the 
measurement noise gives us the signal to noise ratio 𝑆

𝑆 =
𝑃!
𝑁
𝑒"($%&')!

𝑆 will equal 1 at some specific frequency 𝑓)

𝑓) =
1
2𝜋𝜎

ln
𝑃!
𝑁

Reducing the noise by a factor 𝜂 gives a new frequency 𝑓$ where 𝑆 is 
again equal to 1

𝑓$ =
1
2𝜋𝜎 ln

𝜂𝑃!
𝑁

The relative gain in frequency, ‘𝛼’, from a noise reduction of 𝜂 is given 
by the ratio of these two frequencies

𝛼 =
𝑓$
𝑓)
= 1 +

ln 𝜂

ln 𝑃!𝑁
Entering expected values of deep ice records for 𝑃! and 𝑁 produces a 
plot of 𝛼 against 𝜂, shown in Fig. 4.

6. Conclusion
• Reducing measurement noise by a factor of 10 more than doubles 

the maximum effective resolution recoverable
• Long integration measurements offer a way to achieve such 

significant improvements in precision
• High precision measurements are especially crucial for very deep, 

thinned ice in attempts to recover millennial-scale variability 

Fig. 4. Effect of reducing 
measurement noise on the 
recoverable frequency. A drop in 
measurement noise of a factor of 10 
(𝜂 = 100) more than doubles the 
frequency at which 𝑆 = 1 

𝑃(𝑓) = 𝑃!(𝑓)𝑒"($%&')
! + 𝑁

Where
P0 = power spectral density (PSD) of

record before diffusion
f = frequency
𝜎 = diffusion length
N = measurement noise

(1)

5. How to achieve such high precision?
• Proposed method using long integration time 

measurements
• Involves continuous measuring of discrete 

water isotope samples for 30+ minutes per 
sample

• Early results suggest measurement noise can 
be decreased by more than a factor of 10

• While time consuming, could be very 
beneficial in valuable intervals with limited 
samples, such as deep, thinned ice

• Can represent a diffused timeseries in the frequency domain using 
Eqn. 1 (Johnsen et al., 2000)
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Fig. 2. Spectral representation of diffusion
Fig. 1. Diffused “fake” ice-core record created using the 
LR04 benthic stack (Lisiecki and Raymo, 2005)

Fig. 3. Lowering the measurement noise increases the 
resolvable frequencies

Fig. 5. Less noisy timeseries (blue) shows visible improvement in deconvolution 
compared to timeseries with more noise (orange)
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