

Coupling water quality and quantity models to integrate climate risk to reservoir water quality into water planning

Mustafa Onur Onen¹, Charles Rougé¹, Isabel Douterelo Soler¹ and Geoff Darch²

Grantham

¹Department of Civil & Structural Engineering, The University of Sheffield, Sheffield, United Kingdom ²Anglian Water Services Ltd, Peterborough, United Kingdom Contact: moonen1@sheffield.ac.uk

Water quantity model: Pywr^[1]

• Open-source, fast, water resources allocation model • Simulates the performance of reservoir systems.

- Flexible timestep
- Developed in Python

Water quality model: General Lake Model (GLM)^[2]

- Open-source, fast, 1-D hydrodynamic model
- Simulates physical, biochemical and environmental lake processes.
- Hourly simulation timestep
- Developed in C

 Frequently stopping and restarting GLM results in numerical instabilities References

4. Pywr Modeling

Extracting future inflow & demand scenarios from regional model

- Isolate the reservoir for simplicity
- but keep dependency to full water system!

- Pywr model of regional water supply area
- 2. Extract inflow and water demand scenarios for Alton Water

1. Run regional water

various climate and

water use scenarios

system under

Isolated Network (Alton Water)

6. Challenges

GLM validation is challenging due to;

- Water quality measured at one depth,
- Summer artificial mixing facilitated by aerator, • GLM demanding more water quality variables than water companies usually measure.

GLM is fast but we run thousands of scenarios

 Parametric and input uncertainties necessitate many simulations.

Instabilities in GLM in the coupled setup

[1] Tomlinson, J.E., Arnott, J.H. and Harou, J.J., 2020. A water resource simulator in Python. Environmental Modelling & Software, 126, p.104635. [2] Hipsey, M.R., Bruce, L.C., Boon, C., Busch, B., Carey, C.C., Hamilton, D.P., Hanson, P.C., Read, J.S., de Sousa, E., Weber, M. and Winslow, L.A., 2019. A General Lake Model (GLM 3.0) for linking with high-frequency sensor data from the Global Lake Ecological Observatory Network (GLEON). Geoscientific Model Development, 12(1), pp.473-523.

- 9 15

Non-calibrated water temperature simulation

RMSE = 2.46NSE = 0.82

7. Next Steps

Sensitivity analysis

 It will help understand mechanics and key inputs and parameters of AB risk within GLM.

Probabilistic calibration

• Uncertainty ranges of GLM parameters will be estimated to consider them in AB risk assessment.

Double modeling

• A model of simplified water quality dynamics will be created. New model will need less inputs and perform faster than GLM without instability issues.