

Higher global gross primary productivity under future climate with more advanced representations of photosynthesis

Jürgen Knauer¹, <u>Matthias Cuntz</u>², Benjamin Smith¹, Josep G. Canadell³, Belinda Medlyn¹, Alison C Bennet⁴, Silvia Caldararu⁵, and Vanessa Haverd³

¹Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia ²Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, France ³CSIRO Environment, Canberra, ACT, Australia ⁴School of Ecosystem and Forest Science, University of Melbourne, Richmond, VIC, Australia ⁵Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland

30% increase in [CO₂] during the last century

⁽Haverd et al. GCB 2020)

(Haverd et al. GCB 2020)

⁽Haverd et al. GCB 2020)

(Haverd et al. GCB 2020)

Optimising leaf nitrogen use leads to similar contributions of the different limitations of photosynthesis = coordination hypothesis (optim)

(Haverd et al. GCB 2020)

(Haverd et al. GCB 2020)

Leaves adapt to growth condition (acclim)

(Nomura et al. Photosyn Res 2023)

Leaves adapt to growth condition (acclim)

(Kumarathunge et al. New Phytolo 2019)

Assimilation happens in the chloroplast, where [CO₂] is lower than in the stomata (gm)

(Flexas et al. Plant Cell Environ 2008)

Stronger response of GPP with more liberated model versions

(Knauer et al. Sci Adv 2023)

Mechanisms reinforce each other

(Knauer *et al.* Sci Adv 2023)

Combined effects not simply sum of individual effects but there are interactions among the processes

(Knauer et al. Sci Adv 2023)

Sensitivities to temperature and [CO₂] change including or excluding individual mechanisms

Summary and Outlook

- Freeing model formulations enhances future land carbon uptake.
 up to globally 25% in 2100.
- Combined effects are not simply the sum of the individual effects but they reinforce each other.
 - Temperature acclimation leads to larger sensitivity of carboxylation to temperature.
 - ➡ Mesophyll conductance leads to larger sensitivity of photosynthesis to CO₂ and smaller sensitivity to temperature.
 - RubisCO-limited rate is more sensitive to changes in CO₂ than electron-transport limited rate.

Optimisation balances better both rates and leads hence to different sensitivity of photosynthesis to CO₂.

Knauer, Cuntz *et al.* (2023) Higher global gross primary productivity under future climate with more advanced representations of photosynthesis. *Science Advances* 9(46), eadh9444. doi: 10.1126/sciadv.adh9444