A scenario-based approach for immediate post-earthquake rockfall impact assessment and case study

M. Alvioli¹, A. Peresan², V. Poggi², C. Scaini², A. Tamaro², F. Guzzetti¹

1. **ISTITUTO DI RICERCA PER LA PROTEZIONE IDROGEOLOGICA** CONSIGLIO NAZIONALE DELLE RICERCHE (PERUGIA, ITALY)

2. SEISMOLOGICAL RESEARCH CENTER

NATIONAL INSTITUTE OF OCEANOGRAPHY AND APPLIED GEOPHYSICS (UDINE, ITALY)

INTRODUCTION: FROM SEISMIC SHAKING TO ROCKFALL MODELING

M. Alvioli

EGU 2024

PHYSICALLY BASED MODELING: **STONE**

- Three-dimensional model for rockfalls
- Describes individual, **point-like** rock **blocks**
- Geometrical simulation of trajectories
 from user-defined starting points
- Trajectories are a sequence of falling, bouncing,

and rolling steps - they stop when the block's kinetic energy is exhausted

Input: digital elevation model (here, 10 m national DEM); map of sources

Ancillary data: terrain geological/lithological information

 \Rightarrow **terrain parameters** (friction coefficient, normal & tangential restitution)

STATIC (TRIGGER-INDEPENDENT) ROCKFALL SOURCES

Alvioli et al., Engineering Geology (2021)

M. Alvioli

DYNAMIC (TRIGGER-BASED) ROCKFALL SOURCES

Probabilistic, static approach consists of:

$$P_{static}(S) = a \left(\frac{S}{90}\right)^b$$

- Ground shaking activates a few static sources ⇒ dynamic source map
- Using peak ground acceleration (PGA):

 $P_{dynamic}(S, PGA) = P_{static}(S) F(PGA)$

F(PGA): $PGA \rightarrow [0,1] \Rightarrow$ a few sources are activated by the EQ trigger

Alvioli et al., Geomorphology (2023) Alvioli et al., Geomatics, Natural Hazards and Risk (2023)

M. Alvioli

USE OF PEAK GROUND ACCELERATION GRIDS

- $P_{dynamic}(S, PGA) = P_{static}(S) F(PGA)$
- 1.0 Linear Linear mapping: NTSF I 0.8 NTSF II $F(PGA) = \frac{PGA - PGA_{min}}{PGA_{max} - PGA_{min}}$ NTSF III 0.6 (HCA) 6.0 (H ---- NTSF IV ---- NTSF V sigmoid Normalized tunable NTSF VI function: 0.2 $F(x) = \frac{1}{2} \left(\frac{x - kx}{k - 2k|x| + 1} + 1 \right)$ 0.0 Rod Car P_{GA} 30 10 20 0 PGA [% of *g*] Alvioli et al., Landslides (2024) M. Alvioli EGU 2024 6

M. Alvioli

Study area Friuli 1976 PGA contour lines + **quenched static sources:**

$$P_{dyn}(S, PGA) = P_{stat}(S) F(PGA)$$

with F(PGA) linear approximation

Alvioli et al., Landslides (2024)

C 🏠 irpi

Alvioli et al., Landslides (2024)

C (irpi

M. Alvioli

Study area Friuli 1976 PGA contour lines + **quenched static sources:**

$$P_{dyn}(S, PGA) = P_{stat}(S) F(PGA)$$

with F(PGA) approximation NTSF I

46.37°N

C (irpi

M. Alvioli

Study area Friuli 1976 PGA contour lines + **quenched static sources:**

$$P_{dyn}(S, PGA) = P_{stat}(S) F(PGA)$$

with F(PGA) approximation NTSF II

M. Alvioli

Study area Friuli 1976 PGA contour lines + quenched static sources:

$$P_{dyn}(S, PGA) = P_{stat}(S) F(PGA)$$

with F(PGA) approximation NTSF III

46.37°N

C (irpi

PHYSICALLY BASED MODELING OF ROCKFALL TRAJECTORIES

Seismic input: Three point sources (main + aftershocks)

Linear coupling F(PGA)

Non-linear coupling F(PGA)

Peresan et al., under review

M. Alvioli

EGU 2024

<u>SUMMARY</u>

- We developed a **modeling chain** including:

Alvioli et al., Landslides (2024)

- Tuning of the seismic-rockfall models coupling is specific of the area
- The method is amenable for application in the same area with a new PGA map, immediately after an earthquake occurs
- Advanced seismic simulations better match with observed rockfalls if:
 - Modeling mainshock (1 seismic source) + aftershocks (3 sources)
 - → Points sources instead of extended sources

Peresan et al., under review

Essential BIBLIOGRAPHY

- F. Guzzetti, G. Crosta, R. Detti, F. Agliardi: "STONE: a computer program for the three-dimensional simulation of rock-falls" Computers & Geosciences 28, 1079 (2002). <u>https://doi.org/10.1016/S0098-3004(02)00025-0</u>
- M. Alvioli, A. Peresan, V. Poggi, C. Scaini, A. Tamaro, F. Guzzetti. "A scenario-based approach for immediate postearthquake rockfall impact assessment". Landslides 21, 1 (2024). <u>https://doi.org/10.1007/s10346-023-02127-2</u>
- M. Alvioli, M. Santangelo, F. Fiorucci, M. Cardinali, I. Marchesini, P. Reichenbach, M. Rossi, F. Guzzetti, S. Peruccacci: "Rockfall susceptibility and network-ranked susceptibility along the Italian railway". Engineering Geology 293, 106301 (2021). <u>https://doi.org/10.1016/j.enggeo.2021.106301</u>
- M. Alvioli, F. Mori, A. Mendicelli, M. Rossi, M. Moscatelli, I. Marchesini, P. Reichenbach. "Seismically induced rockfalls hazards from ground motion scenarios in Italy". *Preprint*. <u>http://dx.doi.org/10.2139/ssrn.4156514</u>
- M. Alvioli, A. De Matteo, R. Castaldo, P. Tizzani, P. Reichenbach. "Three-dimensional simulation of rockfalls in Ischia, Southern Italy, and preliminary susceptibility zonation". Geomatics, Natural Hazards and Risk 13, 2712 (2022). <u>https://doi.org/10.1080/19475705.2022.2131472</u>
- G.F. Panza, C. La Mura, A. Peresan, F. Romanelli, F. Vaccari: "Seismic hazard scenarios as preventive tools for a disaster resilient society". Advances in Geophysics 53, 93 (2012). <u>https://doi.org/10.1016/B978-0-12-380938-4.00003-3</u>
- A. Peresan, M. Alvioli, E. Zuccolo, F. Vaccari, H. Badreldin: "An approach to rockfall hazard scenarios based on earthquake ground motion". <u>Under review</u>

M. Alvioli

EGU 2024

ADDITIONAL SLIDES

Alvioli et al., Landslides (2024)

M. Alvioli

Study area Friuli 1976 PGA intensity + unquenched static sources:

$$P_{stat}(S) = a(A/90)^b$$

EGU 2024

13.10°E

Alvioli et al., Landslides (2024)

M. Alvioli

Study area Friuli 1976 PGA intensity + **quenched static sources:**

$$P_{dyn}(S, PGA) = P_{stat}(S) F(PGA)$$

with F(PGA) linear approximation

13.10°E

Alvioli et al., Landslides (2024)

M. Alvioli

Study area Friuli 1976 PGA intensity + quenched static sources:

$$P_{dyn}(S, PGA) = P_{stat}(S) F(PGA)$$

with F(PGA) approximation NTSF I

13.10°E

Alvioli et al., Landslides (2024)

M. Alvioli

Study area Friuli 1976 PGA intensity + **quenched static sources:**

$$P_{dyn}(S, PGA) = P_{stat}(S) F(PGA)$$

with F(PGA) approximation NTSF II

Alvioli et al., Landslides (2024)

M. Alvioli

Study area Friuli 1976 PGA intensity + **quenched static sources:**

$$P_{dyn}(S, PGA) = P_{stat}(S) F(PGA)$$

with F(PGA) approximation NTSF III

- Comparison: classified runout and observed triggered landslides
- We show percentage of landslide cells in each class:

CLASS	Static	Linear	NTSF I	NTSF II	NTSF III
1	6.5%	8.1%	4.1%	4.1%	4.4%
2	12.4%	11.4%	6.1%	7.1%	6.8%
3	18.4%	18.4%	9.6%	10.2%	12.4%
4	28.6%	30.0%	21.4%	21.8%	24.5%
5	34.0%	32.2%	56.1%	53.4%	44.1%
Total	100%	100%	97.2%	96.7	92.2%

• Goal: maximize agreement with the least possible number of source pixels

M. Alvioli

M. Alvioli

- Quenched sources: estimated average
 PGA with 475 y return time
- Seismically-induced Rockfall susceptibility at 475 y return time
- National coverage of slope units: 224,032 km² (no plains)

Project *FRA.SI. – Seismically induced landslides –* funded by the Italian Ministry of Environment

Alvioli et al., Geomorphology (2023)

M. Alvioli

C (irpi

Project *FRA.SI.* – *Seismically induced landslides* – funded by the Italian Ministry of Environment

Alvioli et al., Geomorphology (2023)

Project *FRA.SI.* – *Seismically induced landslides* – funded by the Italian Ministry of Environment

Alvioli et al., Geomorphology (2023)

M. Alvioli

Project *FRA.SI.* – *Seismically induced landslides* – funded by the Italian Ministry of Environment

Alvioli et al., Geomorphology (2023)

M. Alvioli

Project *FRA.SI.* – *Seismically induced landslides* – funded by the Italian Ministry of Environment

Alvioli et al., Geomorphology (2023)

M. Alvioli

Alvioli et al., Geomorphology (2023)

M. Alvioli

EGU 2024

Alvioli, Falcone et al. (under review)

M. Alvioli

Alvioli, Falcone et al. (under review)

M. Alvioli

EGU 2024

Alvioli, Falcone et al. (under review)

M. Alvioli

SUMMARY: A TRULY MULTISCALE MODEL FOR ROCKFALLS

- National Scale:
 - → 10 m resolution all over Italy, probabilistic rockfall sources
 - results aggregated at slope unit level
 - → PGA with different return times, rockfall hazard
- Regional (individual EQ event) scale:
 - → **10 m** resolution all over Italy, **probabilistic sources**
 - full resolution results, fine tuning of parameters for a few events
- Local scale:
 - → high-resolution elevation data, LiDAR
 - → field surveys, detailed study of sources (beyond probabilistic)

