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Feature-based machine learning techniques for solar flare forecasting rely on features, representing physical parameters, that are extracted from magnetograms, as from Helioseismic and Magnetic Imager (HMI) images. 

The most common approach consists in standardizing such features in order to make them adimensional and applying machine learning techniques to predict the occurrence of solar flares. With this standard 

approach the machine learning model does not take into account the physical nature of features.

We propose a physics-aware machine learning approach with the aim of constructing physical explainable models: the approach is based on first creating combinations of features accordingly to their dimension driven by 

the plasma equations and then on applying machine learning techniques on such new combinations in order to explore which ones lead to a more predictive model. 
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Results

Feature Selection and Physics-Driven Analysis

Introduction

1. For the training and test set separations, we opted for two different approaches:

• the former inspired by the uniform dataset created in (Guastavino et al. (2022)), which

suggests avoiding chronological splitting of historical data into training and test sets due          

to the bias introduced by the cyclical nature of solar activity. 

• the latter inspired by (van der Sande et al. (2023)) which uses a cycle-agnostic 

temporal splitting, specifically, for each year, our test set comprised samples from 

November and December, while the remaining data constituted our training set.

To validate our physics-driven study, we conducted a comparison between our results and 

those obtained through LASSO with Recursive Feature Elimination (RFE) on the same 

features utilized in creating our operations. However, these features were not combined 

and were standardized beforehand, allowing us to contrast our outcomes with the 

conventional approach.

As predictors we included features highlighted in two previous works:

• (Bobra et al. (2015)) where SHARP features with the highest F-

score were selected.

• Campi et al. (2019) where features from the FLARECAST project 

(Georgoulis et al. (2021)) were ranked for importance using LASSO 

and Random Forest.

2.   Analysis of Figure 1 demonstrates our 

physics driven method's 

(OPERATIONS) consistent superiority 

over the standardized feature 

approach (FEATURES). It not only 

delivers better results consistently but 

also showcases greater stability, as 

indicated by a narrower spread around 

the mean value. This emphasizes our 

method's accuracy in predicting solar flare 

events.

3.   Another important outcome of our 

analysis was the extraction of the most 

relevant and predicting operations from 

those defined in Table 2. This was achieved 

through the RFE algorithm and the 

extraction was conducted using both test 

sets. The coherence among the extracted 

relevant operations is evident in Figure 2, 

where op8, op5, op7 and the various 

versions of op6 consistently emerge as the 

most significant operations in both 

histograms.

Table 1: Lists of features involved in our study with units of 

measurement, distinguishing SHARP elements in capital 

letters from FLARECAST features.
Table 2: Lists of the features involved in our study with units of measurement

Figure 2: Comparing RFE-

identified operations: left 

depicts a histogram of 

operations via the uniform 

dataset method; right 

showcases operations 

extracted using temporal 

splitting. The most predictive 

operations are represented in 

red.

Figure 1: Boxplots depict the 

forecasting of C+ events through 

the chosen dataset methodologies: 

the uniform dataset inspired by 

(Guastavino et al. (2022)) (left 

panel) and the temporal splitting 

approach by (van der Sande et 

al. (2023)) (right panel). Within the 

light blue boxplot, our physics-

driven methods leveraging 

OPERATIONS are showcased, 

while the pink boxplot illustrates the 

conventional method utilizing 

standardized FEATURES.

The main idea of this study is to construct a new coherent set of features obtained by 

suitably combining the original predictors in a such way that they share the same units. 

We performed the following steps:

• we made a dimensional analysis of the selected features (Table 1) and we observed that all 

of the predictors could be described using different combinations of the same fundamental 

units: gauss (𝐺), amperes (𝐴), and meters (𝑚)

• we divided the features in lists accordingly to the different units (Table 1)

• we defined admissible operations between the original features that provide 

predictors in a new shared unit. Given that the fundamental units used to describe the 

predictors could be combined in various ways to describe all of our predictors, we adopted a 

unit based on their product: 𝑮𝑨𝒎𝟐, which is the physical unit of energy. These 

operations (Table 2) involve the multiplication and division of features. When a squared unit 

is present, we either allow the feature to be multiplied by itself or to be multiplied by a 

different feature that share the same units. To handle such cases, we introduced different 

versions of the same operation (ex: op6, op6a, op6b, op6c). 

By utilizing this approach, we were able to place a significant emphasis on the physical 

nature of our data.

In the context of linear regression, we encounter a set of 𝑁 samples {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁 , where each 𝑥𝑖 =

(𝑥𝑖1… , 𝑥𝑖𝑝) denotes a 𝑝-dimensional vector of features and 𝑦𝑖represents the associated response. The objective is 

to find an estimator function ො𝑔:𝒳 → 𝒴 that approximates the input-output relation, where g(𝑥) = ⟨𝑥| ۧ𝛽 =
𝑥𝑇𝛽 𝑤𝑖𝑡ℎ 𝛽 ∈ ℝ𝑝 signifies the regression weights vector to be estimated.

The Least Absolute Shrinkage and Selection Operator (LASSO) method seeks the solution መ𝛽 to the optimization 

problem

min
𝛽∈ℝ𝑝

1

𝑁
| 𝒚 − 𝑿𝛽 |2

2 + 𝜆|𝛽|1

where 𝜆 ≥ 0 represents the regularization parameter and 𝛽 = (𝛽1, … , 𝛽𝑝)
𝑇 ∈ ℝ𝑝 signifies the regression weights 

vector (Hastie et al. (2009)). It is crucial to standardize features in this process involving the summation of various 

predictors 𝑿, ensuring they are dimensionless.

Standardization ensures that the choice of units for predictor measurements does not impact the solutions. It is 

achieved via the following formula, making the final result is dimensionless:  

𝑥 =
𝑥𝑖 − 𝜇𝑖
𝜎𝑖

where 𝑥𝑖 denotes the single predictor being standardized, 𝜇𝑖 signifies its mean, 𝜎𝑖 represents its standard 

deviation, and 𝑥𝑖 represents the standardized predictor. 

If we consider a set of predictors 𝑥 = (𝑚, 𝑣, 𝐸), where 𝑚 represents mass, 𝑣 signifies velocity, and 𝐸 represents 

energy, the estimator g 𝑥 computation is as follows:

g 𝑥 = ⟨𝛽| ۧ𝑥 ℝ3= 𝛽1 𝑚 + 𝛽2 𝑣+ 𝛽3 ෨𝐸

where the features were earlier standardized to render them dimensionless in order to allow the sum. 

However, our approach diverges from this common practice by focusing on the physical units of predictors 

instead of disregarding them. The fundamental concept involves leveraging the LASSO to construct an estimator 

that utilizes non-standardized features, combining them in a manner that shares the same physical unit. 

For instance, if we opt to work solely with energies among the predictor set detailed above, we construct a feature 

map 𝝍(𝒙) that accounts for the physical units. 

In this scenario, 𝜓:ℝ3 → ℝ2, where 𝜓 𝑥 = 𝑚 · 𝑣2, 𝐸 and the computation of 𝑔(𝑥) becomes:

g(𝑥) = ⟨𝛽| ۧ𝜓 𝑥 ℝ2 = 𝛽1 𝑚 · 𝑣2 + 𝛽2𝐸

This approach enables us to consider the inherent physical properties of our features without 

encountering issues during the summation process. 
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