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Introduction

Feature-based machine learning techniques for solar flare forecasting rely on features, representing physical parameters, that are extracted from magnetograms, as from Helioseismic and Magnetic Imager (HMI) images.

The most common approach consists in standardizing such features in order to make them adimensional and applying machine learning techniques to predict the occurrence of solar flares. With this standard
approach the machine learning model does not take into account the physical nature of features.

We propose a physics-aware machine learning approach with the aim of constructing physical explainable models: the approach is based on first creating combinations of features accordingly to their dimension driven by
the plasma equations and then on applying machine learning techniques on such new combinations in order to explore which ones lead to a more predictive model.

Linear LASSO Regression vs Physics-Driven Regression

In the context of linear regression, we encounter a set of N samples {(x;, ¥;)}/=; , Where each x; = If we consider a set of predictors x = (m, v, E), where m represents mass, v signifies velocity, and E represents
(xi1 ---, Xip) denotes a p-dimensional vector of features and y;represents the associated response. The objective iIs  energy, the estimator g(¥) computation is as follows:

to find an estimator function §: X — Y that approximates the input-output relation, where g(x) = (x|f) =
xT B with B € RP signifies the regression weights vector to be estimated. g(X) = (B|X)p3= P11 + B D+ B3E

The Least Absolute Shrinkage and Selection Operator (LASSO) method seeks the solution £ to the optimization where the features were earlier standardized to render them dimensionless in order to allow the sum.
problem

(1 5 However, our approach diverges from this common practice by focusing on the physical units of predictors
Erelﬁ{zlo {N ly — XBlIz + ’”Bll} Instead of disregarding them. The fundamental concept involves leveraging the LASSO to construct an estimator
that utilizes non-standardized features, combining them in a manner that shares the same physical unit.
where 1 > 0 represents the regularization parameter and g = (B, ..., 8,)7 € RP signifies the regression weights For instance, if we opt to work solely with energies among the predictor set detailed above, we construct a feature

vector (Hastie et al. (2009)). It is crucial to standardize features in this process involving the summation of various ~MaP ¥ (x) that accounts for the physical units.

predictors X, ensuring they are dimensionless. _ _ ) ) _
In this scenario, y: R3 - R?%, where y(x) = (m - v4, E) and the computation of g(x) becomes:

Standardization ensures that the choice of units for predictor measurements does not impact the solutions. It is

_ _ 102
achieved via the following formula, making the final result is dimensionless: g(x) = (BlY))gz = Br(m-v°) + BE
L X T This approach enables us to consider the inherent physical properties of our features without
X = o; encountering issues during the summation process.

where x; denotes the single predictor being standardized, u; signifies its mean, o; represents its standard
deviation, and X; represents the standardized predictor.

Feature Selection and Physics-Driven Analysis
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Results
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