
SeismicWaves.jl

SeismicWaves.jl: an efficient yet user-friendly Julia package for Full-Waveform Inversion on multi-xPUs
Giacomo Aloisi, Andrea Zunino and Andreas Fichtner

Institute of Geophysics, ETH Zürich, Switzerland <giacomo.aloisi@erdw.ethz.ch>

Built for efficiency
Most of computation time spent in kernelAchieving close to peak performance

Easy to use and adapt to new features

Designed for Full-Waveform Inversion Device-agnostic and scalable
Overthrust 2D acoustic FWI w/correlated noise

Target model + source/receivers setup

Model resolution: 900x600 grid points
FWI time: ≈35mins, 3000 time steps, 50 LBFGS iterations

on NVIDIA A100 GPU

Reconstructed model

Initial model

models from Aminzadeh, F., Brac, J., Kunz, T., (1997)
SEG/EAGE 3-D Salt and Overthrust Models

References
- Aloisi G., Zunino A., Fichtner A., (2023) Full Waveform Inversion for Medical Ultrasound Tomography
in Julia on multi-xPUs, MSc Thesis, ETH Zürich
- Zunino A, Gebraad L., Ghirotto A. and Fichtner A. (2023), HMCLab: a framework for solving diverse
 geophysical inverse problems using the Hamiltonian Monte Carlo method
- Omlin S., Räss L., (2022), High-performance xPU Stencil Computations in Julia

Features written in oblique are work in progress!
SeismicWaves.jl v0.6 pre-release available
Features planned on v1.0 final release
- fully-fledged multi-xPUs implementation using PS.jl + IGG.jl
- P-SV elastic implementation on a staggered grid (4th order in space)
- more misfits and regularizations available (only L2 misfit in pre-release)
- framework for Full-Waveform Ambient Noise Inversions (FWANI)

CUDA.jl
NVIDIA GPUs

AMD GPUs
AMDGPU.jl

Metal.jl
Apple silicon GPUs

JuliaGPU

Base.Threads
CPU multi-threading

B
ac

ke
nd

s

ParallelStencil.jl backend selection

Linear checkpointing saves up storage requirements:
only need to store 2k = 2√Nt instead of Nt timesteps

(at the cost of one more forward simulation)

Checkpointing for storing timesteps

forward

adjoint

Abstract
SeismicWaves.jl is a package for finite-
differences-based wave simulations in the
context of Full-Waveform Inversion for
seismic tomography problems. It is written
100% in the Julia programming language
and by leveraging its parallel capabilities and
easiness of use, it can provide scientists
with rapid prototyping in FWI scenarios
where performance and efficiency are critical
factors. The developed code can then be run
on multi-node clusters, automatically
adapting to the specific hardware and
enabling true multi-xPUs computing.

Functionalities
- Forward and adjoint 4th order finite-difference for acoustic and elastic waves
- Reflective and CPML (absorbing) boundary conditions
- 1D, 2D, and 3D rectangular domains on a regular uniform grid
- Adjoint-based gradients with respect to material properties
- Linear checkpointing to store intermediate timesteps for adjoint computations

Leveraging state-of-the-art HPC packages and techniques
ParallelStencil.jl and ImplicitGlobalGrid.jl enable device-agnostic distributed
computing (multi-xPUs) making SeismicWaves.jl suitable for all needs: from quick
prototyping on your laptop to large-scale simulations on supercomputing clusters.
Performance benchmarks show close to peak performance utilization (up to 90%)
on modern GPUs and ideal weak scaling efficiency on distributed systems.

Acoustic 2D variable density forward code snippet
using SeismicWaves, CUDA, HDF5

Load velocity and density models, sources and receivers positions from HDF5 file
vp, rho, possrcs, posrecs = h5open("setup.h5", "r") do ... end
Numerics
nx, ny, nt = size(vp), 25000 # number of grid points and iterations
Δh, Δt = 0.01666666, 0.002 # grid step and time step sizes [m, s]
Ricker source time function with central frequency f0 [Hz] and activation time t0 [s]
stf = reshape(rickerstf.([(i-1)*Δt for i in 1:nt], t0=1.0, f0=2.0), nt, 1)
Single shot setup
shot = Shot(ScalarSources(possrcs, stf, f0), ScalarReceivers(posrecs, nt))
Setup parameters
bdcs_params = CPMLBoundaryConditionParameters(halo=20, rcoef=0.001, freeboundtop=true)
params = InputParametersAcousticVariableDensity(nt, Δt, (nx, ny), (Δh, Δh), bdc_params)
Build wavesim
wavesim = build_wavesim(params; parall=:GPU)
Run forward simulation
swforward!(wavesim, VpRhoAcousticVDMaterialProperty(vp, rho), [shot])

import SeismicWaves into your code

create shot(s) with sources
and receivers configuration

setup wave simulation parameters
build wave simulation
and backend selection

create material properties
run the simulation

Only 10 lines of code
to run a forward simulation!

Gradients with respect to
material properties require just a

few more lines

Complete control over choice of
misfit and regularization with
possibility to implement your

own!

Poster abstract

Open-source
GitLab repository

Poster abstract

Open-source
GitLab repository

Weak scaling benchmark shows ideal scaling efficiency

ParallelStencil.jl

ImplicitGlobalGrid.jl

+

(instead of a 6 hours serial run on AMD EPYC 7282 CPU)
12x speedup!

in collaboration withpowered by

1

2 3

4

