

AQUA:

the European Union Destination Earth implemented by CECMWF Cesa EUMETSAT

a novel quality assessment tool for km-scale simulations in the Destination Earth Climate Digital Twin – The Core Framework

Matteo Nurisso, J. von Hardenberg, S. Caprioli, S. Ghosh, N. Koldunov, B. Kinoshita, N. Nazarova, P. Ghinassi, P. Davini

CNR ISAC

olitecnico di Torino

EGU2024, Vienna 16 April 2024

Funded by

The challenges of Destination Earth

The challenges of DestinE Climate DT

Three Earth System Models:

Climate DT key features and challenges:

- **User-driven approach** focused on user interactivity.
- Global climate simulations at **unprecedented horizontal resolution** (5 km).
- Novel **streaming framework** of climate model output to applications (end to end workflow).
- Deployment on three European pre-exascale supercomputers.

K. Keller's Talk on Destination Earth (Wed, 17 Apr, 11:00 | Room 0.94/95)

The challenges of AQUA

Many tools are available for model analysis (ESMValTool, E3SM, CMEC...), however:

- Amount of data for a single simulation is critically high
- Data access in not with simple netCDF files, but FDB software, with data both locally on HPC and remote on Data Bridge
- Scalability is crucial for even being able to open data
- Monitoring is continuous and automatic in a operational framework

AQUA experience inside DestinE is highly beneficial for many other projects

The Philosophy of AQUA

AQUA provides a framework to **access**, **process** and **analyze** large volumes of climate data (e.g. Destination Earth: 36 TB of output, per simulated year.)

Python3 library package based on xarray, dask, CDO and intake

Modular structure seamless integration between core functions

Technical details are hidden simple user experience

Lazy access to all compatible data (parallel dask enabled)

Fast regrid capabilities based on precomputed weights

CI/CD on every new code addition with around 80% code coverage

Core concept: The Catalogue

to 2022

Catalogue: a machine dependent folder containing paths and technical details of all the sources that the user may want to access (models and observational datasets).

- Built on **intake** package
- 3 level hierarchy for models, experiments, sources
- Ensembles support
- Dedicated intake driver for **lazy FDB** access
- **Templating** can be done for automatic catalogue generation!

Once a source is added it is available to every AQUA user, who will only ask for:

reader = Reader(model='IFS-NEMO', exp='ssp370',

source='hourly-native-atm2d')

data = reader.retrieve()

	ERA5 as netCDF	
IFS-NEMU ON FUB	<pre>config > machines > lumi > catalog > ERA5 > ! era5.yaml</pre>	
<pre>onfig > machines > lumi > catalog > IFS-NEMO > ! ssp37 1 sources: 2 hourly-native-atm2d: &base-default 3 args: &args-default 4 class: d1 6 dataset: climate-dt 7 dataset: climate-dt 9 generation: 1 10 model: IFS-NEMO 11 resolution: high 13 exper: '0001' 14 type: fc 15 stream: clte 16 date: 20210101</pre>	<pre>2 Source: 3 - module: intake_xarray 4 5 sources: 6 monthly: 7 description: ERA5 monthly data from 1940 8 driver: netcdf 9 metadata: 10 source_grid_name: era5-r025 11 fixer_name: ERA5-destine-v1 12 args: 13 urlpath: '{{DATA_PATH}}/ERA5/mon/ERA5_: 14 chunks: 15 time: 12 16 xarray_kwargs:</pre>	
17 time: '0000' 18 param: 167 19 levtype: sfc 20 step: 0 21 data_start_date: auto 22 data_start_date: auto 23 chunks: D # Default time chunk size 24 savefreq: h # at what frequency are of 25 timestep: h # base timestep for step 26 timestyle: date # variable date or va 27 description: hourly data on native grid 28 metadata: Gmetadata-default 30 fdb_home: /users/lrb_465000454_fdb/nat 31 fdb_path: /users/lrb_465000454_fdb/nat 32 eccodes_path: /projapl/project_465000 33 variables: [78, 79, 134, 137, 141, 144, 144 34 187, 188, 235, 260048, 8, 9, 144, 144 35 ida, 181, 182, 212, 228] 36 source arid name: tra2550	17 decode_times: True	
27 fiver pares if dectine ut		

	4	
2	T.	
	т	

AQUA intermodel and observations comparison requires a common metadata format.

- Yaml file with **fixer_name** that can be applied to multiple models/exps/sources
- In DestinE Climate DT a GRIB standard is used.
- Other standards can be defined for future applications (CMOR).
- Fixes are defined when creating a source and the **automatically** enabled when data are retrieved.
- For the user the process is totally **invisible**.
- GRIB and **history metadata** are ⁴ updated for data provenance.

Core concept: The Fixer

CERES observations

es-ebaf-destine-v1: data_model: False vars: mtnlwrf: derived: 0.-toa_lw_all_mon grib: true attributes: valid_man: -500 valid_max: 0 positive: down mtnswrf: derived: solar_mon-toa_sw_all_mon grib: true attributes: valid_min: 0 valid_max: 1400 positive: down msnlwrf: derived: 0.-sfc_net_lw_all_mon grib: true msnswrf: derived: sfc_net_sw_all_mon grib: true

EC-EARTH4

Core concept: The Regridder

AQUA provides functions to interpolate and regrid data to match the spatial resolution of different datasets.

- Regridding functionalities based on smmregrid which operates sparse matrix computation based on pre-computed weights.
- Grids are defined in yaml file in AQUA and weights are evaluated with CDO only once.
- Grid files are already **synchronized** and have a backup on DKRZ Swift website.
- Each source can specify which grid is the correct one to use.
- Once the grid is set, regrid technicalities are transparent to user

Processing

AQUA core classes and functions can be integrated in any analysis

Simple example of custom analysis

Custom processing for a seasonal cycle

from aqua import Reader

reader = Reader(model='IFS-FESOM', exp='ssp370-ng4', source='Ira-r100-monthly')
data_20_30 = reader.retrieve(var='2t', startdate='2020', enddate='2030')
cycle_20_30 = data_20_30['2t'].aqua.fldmean().groupby('time.month').mean('time')

Graphics utilities for a custom plot

from aqua.graphics import plot_seasonalcycle

plot_seasonalcycle(data=[cycle_20_30['2t'], cycle_30_40['2t']], cycle_40_50['2t']]

data_labels=['2020-2030', '2030-2040', '2040-2050'],

title='2t seasonal cycle IFS-FESOM nextGEMS cycle4')

- Use AQUA framework as a **library** in your analysis
- Build your own AQUA diagnostic

EUMETSAT

THANK YOU FOR YOUR ATTENTION!

The code is on GitHub and will be **Open Source** soon!

https://github.com/DestinE-Climate-DT/AQUA

Aqua core team Contacts:

- <u>m.nurisso@isac.cnr.it</u>
- <u>silvia.caprioli@polito.it</u>
- jost.hardenberg@polito.it
- <u>p.davini@isac.cnr.it</u>
- <u>natalia.nazarova@polito.it</u>

Already over 1000 issues and pull requests with over 22 releases and automatic container creation!

Destination Earth implemented by CECMWF Cesa

