Turbulent transport extraction and high time resolution flux estimation using wavelet analysis

Gabriel Destouet ¹ Nikola Besic ² Emilie Joetzjer ¹ Matthias Cuntz¹

¹UMR SILVA, INRAE, AgroParisTech, Université de Lorraine, Nancy, France

²Laboratoire d'Inventaire Forestier, IGN, ENSG, Nancy, France

Context and Goal

 Context: Study of forest ecosystem dynamics at fine temporal resolutions of 1 minute to 1 hour (e.g. the dynamic of canopy conductance)

Require high time resolution fluxes

- Goal: estimation of ecosystem fluxes carried by local turbulent transport at a rate of ~1min
- Data: Using FR-Hes flux tower measurements, forest ecosystem, (30m tall tower, 20m tall canopy)

Limits of standard eddy-covariance

Limits of standard eddy-covariance

Limitations

- Averaging length cannot be modified without risking biased estimation
- Quality tests only flag periods with trends or under-developed turbulence

Limits of standard eddy-covariance

Limitations

- Averaging length cannot be modified without risking biased estimation
- Quality tests only flag periods with trends or under-developed turbulence

Standard Eddy-Covariance cannot separate scales in non-stationnary settings

Dealing with Non-Stationnarity and Scales Separation: An illustration

Dealing with Non-Stationnarity and Scales Separation: An illustration

Dealing with Non-Stationnarity and Scales Separation: An illustration with wavelet analysis

Dealing with Non-Stationnarity and Scales Separation: Proposed Methodology

Main problem in flux estimation carried by turbulent transport

Separation of scales in non-stationnary conditions

Wavelet Transforms as a basic tool to circumvent that problem

Proposed methodology

- A. Time-Frequency decomposition of fluxes
- B. Identification of turbulent transport in time-frequency space
- C. Integration of a high time resolution flux given A. and B.

A. Time-Frequency Decomposition of Fluxes

A. Time-Frequency Decomposition of Fluxes

A. Time-Frequency Decomposition of Fluxes

$$\left(\begin{array}{ccc} \overline{u'^2} & \overline{u'v'} & \overline{u'w'} \\ & \overline{v'^2} & \overline{v'w'} \\ & & \overline{w'^2} \end{array}\right)$$

$$\begin{pmatrix} \overline{u'^2} & \overline{u'v'} \\ \overline{v'^2} & \overline{v'w'} \\ \overline{w'^2} & \overline{w'^2} \end{pmatrix} \xrightarrow{\tau_w} = \sqrt{\overline{u'w'}^2 + \overline{v'w'}^2 + \overline{w'^2}^2}$$

$$\begin{pmatrix} \overline{u'^2} & \overline{u'v'} \\ \overline{v'^2} & \overline{v'w'} \\ \overline{w'^2} & \overline{w'^2} \end{pmatrix} \longrightarrow \tau_w = \sqrt{\overline{u'w'}^2 + \overline{v'w'}^2 + \overline{w'^2}^2} = \sqrt{u^{*4} + \sigma_w^4}$$

$$\begin{pmatrix} \overline{u'^2} & \overline{u'v'} \\ \overline{v'^2} & \overline{v'w'} \\ \overline{w'^2} & \overline{w'^2} \end{pmatrix} \xrightarrow{\tau_w} = \sqrt{\overline{u'w'}^2 + \overline{v'w'}^2 + \overline{w'^2}^2} = \sqrt{u^{*4} + \sigma_w^4}$$

... but in time-frequency space !

 τ_w + thresholding

Laplacian of τ_w

Laplacian of τ_w + thresholding + linear weighted regression

= critical scale

 τ_w + thresholding + critical scale

 τ_w + thresholding + critical scale = turbulent transport mask

C. High Time Resolution Flux Integration

Decomposed flux

C. High Time Resolution Flux Integration

Decomposed flux + turbulent transport mask

Conclusion and Perspectives

Take-Away

- ▶ High temporal resolution flux from local turbulent transport with adjustable rate
- Fast: 24-hour flux at 1-minute resolution from 20Hz data in less than 2 minutes

Comparison with standard Eddy-Covariance

- Handles non-stationnarity and tests for developed turbulence
- More consistent predictions

Comparison with other wavelet-based approaches

- Use a parametrized superfamily of wavelets (Generalized Morse Wavelets)
- Continuous Wavelet transform and averaging kernel designed to conserve global flux
- ▶ Wavelet coefficients filtering (thresholding) not solely based on energy criteria

Conclusion and Perspectives

Perspectives

- Test in different ecosystems and with taller towers
- Study of ecosystem response time using differentiability of estimated fluxes

Ressources available

- Paper in preparation
- TurbulenceFlux.jl julia package with data samples and notebook will be available on github

Thank you ! Contact: gabriel.destouet@inrae.fr