Reconciling risk-based and storyline attribution with Bayes theorem

Sebastian Buschow¹, Petra Friederichs¹, Andreas Hense¹ ¹University of Bonn

Risk-based attribution

Model **probability** of an event in two scenarios:

- 1. Factual scenario S_1 with climate change
- 2. Counterfactual S₀ without

Report probability ratio:

"Heatwaves of this magnitude have become twice as likely due to anthropogenic climate change."

Unconditional attribution of an event class.

Storyline attribution

Simulate **specific event** twice:

- 1. realistic, observed boundary conditions
- 2. modified boundary conditions \rightarrow warmer or cooler world

Report difference in event properties:

"The 2010 heat wave would have ended two weeks earlier in a 1°C degree cooler climate."

Attribution of an event, **conditional on the** weather situation that generated it.

Conditional and unconditional probability ratio are linked by Bayes theorem

Usual probability ratio:

$$\mathsf{PR}(E) = \frac{\mathsf{Prob}(E|S_1)}{\mathsf{Prob}(E|S_0)}$$

Joint probability ratio:

$$\mathsf{PR}(E, C) = \frac{\mathsf{Prob}(E, C|S_1)}{\mathsf{Prob}(E, C|S_0)}$$

Conditional probability ratio:

$$\mathsf{PR}(E|C) = \frac{\mathsf{Prob}(E|C, S_1)}{\mathsf{Prob}(E|C, S_0)} = \frac{\mathsf{PR}(E, C)}{\mathsf{PR}(C)}$$

Conditional attribution = ratio of two "classic" attributions

- 1. joint PR of event and conditions
- 2. PR of the conditions alone

- E : Event
- C : Conditions
- S₁: Factual scenario
- S₀: Counterfactual scenario

Attribution of Summer Temperature conditional on Blocking

- Central Europe summer (JJA) means of T2m, blocking index (Sousa et al. 2021)
- \circ 8 CMIP6 ensembles (S₁ : *historical* S₀ : *hist-nat*), ERA5 1961-2014
- Bayesian Gaussian mixture model for the probabilities

 S_1

 S_0

Attribution of Summer Temperature conditional on Blocking

Unconditional and conditional probability ratio PR

Bars represent 95% confidence interval based on uncertain choice of climate models and obs. covariance, white dots mark the medians.

Summary

- \circ Risk-based vs Storyline \rightarrow unconditional vs conditional attribution
- General link via Bayes theorem:

$$\mathsf{PR}(E|C) = \frac{\mathsf{PR}(E,C)}{\mathsf{PR}(C)}$$

○ Example PR(Temperature | Blocking) \rightarrow PR overall enhanced, especially for weakly blocked years like 2007, 2014.

References

Sousa, P. M., Barriopedro, D., García-Herrera, R., Woollings, T., & Trigo, R. M. (2021). A New Combined Detection Algorithm for Blocking and Subtropical Ridges. Journal of Climate, 34(18), 7735-7758. https://doi.org/10.1175/JCLI-D-20-0658.1

Min, S. K., Hense, A., Paeth, H., & Kwon, W. T. (2004). A Bayesian decision method for climate change signal analysis. Meteorologische Zeitschrift, 13(5), 421-436. Shepherd, T. G. (2016). A common framework for approaches to extreme event attribution. Current Climate Change Reports, 2, 28-38.

Additional information

	model	hist	hist_nat	piControl
0	access-cm2	3	3	30
1	canesm5	35	45	1051
2	cesm2	10	1	1200
3	cnrm-cm6-1	24	3	316
4	hadgem3-gc31-ll	4	10	500
5	ipsl-cm6a-lr	23	6	115
6	miroc6	10	3	500
7	mri-esm2-0	5	5	200
9	total	114	76	3912

Attribution of Summer Temperature T conditional on Blocking B

Idealized example: (T,B) is bivariate Gaussian with unit variances, B is independent of the scenario

 S_0 cor(T, B) = 0.2cor(T, B) = 0.8 S_1 0.10 0.10 0.05 0.05 0.00 0.00 110 2 ng B 0 ng king B 2 BIOCHING B -2 0 2 Temperature T -2 0 2 Temperature T -2 -2 4 4

log PR(T|B) = (T - mean(μ) - $\rho \times B$) × (μ (S1) - μ (S0)) × (1 - ρ^2)⁻¹